
Birthing a Ray Tracer

Mark Tigges mtigges@cpsc.ucalgary.ca

November 24, 1997

1 Introduction

Ray tracing as an image synthesis technique has en-

joyed immense success. Learning about the algo-

rithms is much easier through implementation for

any technique, in the case of ray tracing one aspect

learned is that it is simple to implement. Moreover,

implementing a ray tracer goes a long way as a learn-

ing aid for much of computer graphics. I will discuss

the very basics of implementing a ray tracer, my own

personal biases will be expressed but no unaccepted

methods will be taught. The one message I wish to

convey is to keep it simple.

All �gures show the x = 0 plane, scalars are lower

case italic (ex. x), vectors are bold (ex. p) and nor-

malized vectors have a hat (ex. d̂).

2 Intersections

I will discuss a general technique for ray object inter-

section with application to spheres. A sphere is far

and away the most common object to intersect. A

plane is slightly easier to intersect but far less inter-

esting. Consider the implicit form of a sphere at the

origin with radius 1 (what I term a canonical sphere):

f(P) = P2

x +P
2

y +P
2

z � 1 = 0

Given a ray R : o+ t �d we want to know for value

t, R(t) = f(P). This is easy (always remember, ray

tracing is simple), let P = o+ t � d̂.

f(R(t)) = (ox + t � d̂x)
2 +

(oy + t � d̂y)
2 +

(oz + t � d̂z)
2
� 1

This is a quadratic equation in t whose coe�cients

are found after a little bit of algebra:

A = o2x + o
2

y + o
2

z � 1

B = 2 � (d̂x � ox + d̂y � oy + d̂z � oz)

C = 1

The solution of the quadratic equation At2+Bt+C =

0 will yield either two solutions or no solutions. (Note

Figure 1: A ray leaving the origin intersecting a

sphere, the distance from the ray's origin to the in-

tersection point is the solution of At2 + Bt + C = 0

for the surface.

that a single solution is really a double root, hence

two solutions.) You are interested in the smaller root,

it indicates the �rst intersection of the ray and the

sphere. In the event of a double root, the ray (to

within the precision of the machine) is tangential to

the sphere. Figure 1 illustrates the meaning of the

solution of the quadratic equation. Substituting the

value for t into the ray equation o + t � d̂ yields the

point in space for the intersection (the question is

which space?).

After �nding an intersection, it is necessary to cal-

culate the normal for the intersected surface. The

normal in the case of an algebraic surface is the par-

tial derivatives w.r.t. x, y and z for each of the re-

spective components of the normal. In the case of

other types of surfaces the calculation of the normal

should be inherent in the de�nition of the surface.

1



For completeness I should give the partial derivatives

for the sphere. However in this discussion I have left

something out. I prefer all intersections to be calcu-

lated in object space, if this is the case, for a sphere

the normal is simply the intersection point (scaled to

unit length, if it isn't already). Transformation be-

tween object and world space is discussed in section

3.

The method as presented for sphere intersection is

completely general. However for surfaces of greater

than fourth degree you must use a root solver to lo-

cate intersection points.

3 Rays & Object Space

Since I advocate simplicity in a ray tracer I argue

for a system which does not know how to intersect a

general object. That is to say I would prefer being

able to only intersect a canonical sphere instead of

arbitrarily positioned spheres or ellipses in arbitrary

orientation. Consider a sphere of radius R translated

to position P. Instead of accounting for generality

Figure 2: A sphere of radius R and position P and a

ray for which to calculate intersection.

in ray object intersection calculation, transform the

ray by the inverse of the a�ne transformation for the

object. That is to say, transform the ray into object

space. So for example, if your ray tracer can only

intersect canonical spheres then to render a sphere

positioned at < 0; 0; 3 >, translate the ray origin by

< 0; 0;�3 >. If an ellipse is desired then scale both

the ray origin and the ray direction by the inverse of

the scale factor. In �gure 3 the ray has been trans-

formed by the inverse scale of < x; 0:5; 2 >. That is

the ray has been scaled by < 1=x; 2; 0:5 >. An inter-

section calculation from a transformed ray yields tos
(object space ray time), we need tws (world space ray

time). We transform the object space intersection to

Figure 3: Transformation of ray into object space,

the original ray and sphere are in solid, the dashed

ray is the transformation into object space to e�ect

the dashed sphere.

world space through application of the objects trans-

formation matrix, and calculate the distance between

it and the world space ray origin.

In section 2 I discussed the need to compute the

normal after locating the intersection. The whole

story is that not only do we need to compute it, we

have to transform it into world space as well. This

transformation is achieved by applying the inverse of

the object transformation matrix. However, a caveat,

since the normal represents a direction and not a lo-

cation (and hence this caveat applies to transforming

ray directions as well) we do not want to translate it.

This means only multiply the direction vectors by the

upper 3x3 portion of your transformation matrices.

This method of transformation of the ray into ob-

ject space is completely general. It does not depend

in any way on the object. The steps are as follows,

transform the ray into object space through applica-

tion of the inverse of the transformation matrix for

the object. Perform the intersection calculation with

the transformed ray. If there was an intersection,

scale the intersection back into world space and com-

pute the time to the world space ray. Whenever we

talk about an inverse it is necessary to wonder about

division by zero - or in our case a singular matrix.

What does it mean for our transformations if we have

a singular matrix? . . . It means we tried to scale

by zero, this is something you probably don't want

to do anyway.

Why would we want to use this technique? The

general implicit form for the equation of a plane is

f(x; y; z) = ax2 + by2 + cz2 + 2dxy + 2eyz + 2fxz +

2gx + 2hy + 2jz + k = 0, which is the general form

of a quadric. For a canonical plane (y = 0, and

normal < 0; 1; 0 >) the ray intersection calculation

amounts to tos = �oy=d̂y. This argument is an ex-

2



Object Normal

Plane < 0; 1; 0 >

Cylinder < x; 0; z >

Sphere < x; y; z >

Cone < x;�y; z >

Table 1: Normals for quadric surface object space

intersections at < x; y; z >.

ageration for e�ect, but it illustrates the point. More-

over, the normal is usually much easier to compute

in object space. As an example, table 1 shows the

non-computations for the normal when given object

space intersections for four common quadric surfaces.

4 Looking At It

Concering setting up a camera view, it may be our

�rst idea to use an arbitrary position and orientation.

If so go back and read the introduction, keep it sim-

ple. Leave the camera at the origin and have it point

down an axis. In order to view objects at a desired

distance and orientation transform them there.

Consider the de�nition of a simple camera view.

We need nothing more (in the case of ray tracing)

than speci�cation of the �eld of view angle (�) and

the resolution (dx,dy) of the image to generate. To

set up a view volume for screen space with square pix-

els we employ a tiny bit of trigonometry. The �eld

Figure 4: A view volume looking down the z-axis,

�x and �y are the angles between the z-axis and the

dashed lines.

of view speci�ed by the user is �x, the angular extent

of horizontal view, the vertical view angle is calcu-

lated �y = �x � dy=dx. Any world space point on the

view plane correspondent to screen space coordinate

(sx,sy) through which rays should be traced is easily

computed.

d =

�
2sx � dx

dx
� tan(�x);

2sy � dy

dy
� tan(�y); z

�
(1)

This assumes that the viewing direction is along the z

axis, z is either 1 or �1, depending on the handedness

of world space. Of course, the ray direction d̂ must

be computed through normalizing the above vector.

5 Making it Look Good

So far we have discussed intersection calculation, sim-

pli�cation thereof and generating initial rays, now we

discuss computing a colour for a pixel through which

a ray has been traced. The colour to compute will be

dependent on the surface properties of the �rst object

that the ray struck, the distribution of luminaires in

the scene and relations between objects. The simplest

model to employ for illumination is due to Whitted

(it is assumed that you are familiar with the basic

Phong illumination model):

I� = Amb� +

NlX
i=1

li� [Diff� + Spec�] + ksIr� + ktIt�

(2)

Amb� = Ia�kaOd�

Diff� = kdOd�(N̂ � L̂)

Spec� = ks(R̂ � L̂)n

li� = SifattiIp�i

There is nothing that much new here over the Phong

illumination model. The new terms are Si, Ir�, kt
and It�. The kt term is the transmission coe�cient, a

factor indicating the e�ciency of the surface in trans-

mission of light (it ranges from 0..1). The interesting

parts are Si, Ir� and It�, these terms are the recur-

sive rays. New rays are traced from the intersection

location (world space) to the light, in the re
ected di-

rection and in the transmitted direction respectively.

Shadow rays are traced in the direction of the i lights,

Si is a factor indicating the success or failure of a ray

reaching a light source. Ir� is the result of computing

the illumination equation for the surface struck �rst

by a re
ected ray, and It� for a transmitted ray. Re-


ection rays are traced in the direction of view vector

3



��������������
��������������
��������������
��������������

L

R
N

V

T

Figure 5: Interaction between an incoming ray �V

and a struck surface.

V̂ re
ected across the surface normal N̂ . Transmit-

ted rays are traced in the direction indicated as T̂ in

5. Calculations for these vectors is:

R̂ = (2(N̂ � V̂)) � N̂� V̂

T̂ =

�
�(N̂ � V̂)�

q
1� �2(1� (N̂ � V̂)2)

�
� �V̂

where � = �t=�i, the transmision and incident indices

of refraction. A full discussion of indices of refraction

is not warranted, but needless to say � for a vacuum is

1 everything else is larger (� for glass is approximately

1.66).

6 Putting it all Together

To construct the beginning of a ray tracer you need to

assemble these components. To compute an image,

simply trace rays from < 0; 0; 0 > through the loca-

tions computed in equation 1 for each screen space

coordinate. Use the surface properties from the �rst

surface struck for equation 2, the color returned from

this computation is used for the color of the pixel for

which the ray was traced. This color should be saved

in a two dimensional array which is saved to �le at

the completion of the scene. The �le format should

not be GIF, JPG, or even BMP. Use an extremely

simple format like ppm. It is not within the domain

of a renderer to compress images - this is the job of

an image manipulation program.

A quick note about precision. A ray tracer su�ers

from many aliasing problems. One of those is the

inability to exactly calculate a surface point. You

should always test a ray intersection calculation for

being greater than some small value (I use 0.001), if

an intersection is less than this value it is probably

the case that you are tracing a recursive ray from a

surface and you intersected exactly the same surface

that the ray is attempting to leave.

7 Further Reading

There are many excellent resources for ray tracing

information. Two very good texts that treat many

aspects of ray tracing from theoretical and practical

aspects are given here.

Watt, Mark and Alan Watt. Advanced Animation

and Rendering Techniques, ACM Press, New York,

1992.

Glassner, Andrew ed. An Introduction to Ray Trac-

ing Academic Press, 1989.

And of course the four wise men is always a good

resource.

Foley, Van Damme, Feiner, Hughes. Computer

Graphics Principles and Practise, 2nd Ed. Addison

Wesley, New York, 1992.

4


