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Perspective Viewing Transformation

RNy

arthographic projeciion parzpective projeciion hEflen Ines reinceed

o Tools for creating and manipulating a “camera” that
produces pictures of a 3D scene

Viewinq transformations and projections
Perform culling or back-face elimination
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The Hlusion of Depth
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Perception Is an active organising process

Many cues to depth!
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Click Me




Canonical View Volume
(as per p160 Shirley)

Object to map lines in the
canonical view volume to
the screen.

(xy.z) € [-1, 1°

(as in interval [a,b])

For now assume that all
line segments are in the
view volume (clipping
later!)

(—13-1,-1)‘-"‘\&

Note Y will be up in next edition of Shirley!
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Mapping to the screen

(as per pl61 Shirley)
Pixel Geometry
(%, %) (%, %)
I(O,O)
(Yo, ) (%, %)
(1, 1)
Map lines to
Screen along the
Z axis in (+)ve 2
direction.
— 2
('11 '1)
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Screen n, by n, pixels

X = -1 -> left side of screen
X = +1 = right side of screen
y = -1 - bottom of screen
y = +1 -> top of screen

Maps square [-1, +1]° to non-square

scales S, and S, will be defined.

(-"2, n-Y2)

(N2, N2)

Screen
» Geometry
ny
nX
(-72, -%2) (N2, -2)




As Before a

Window to Viewport Transform

Canonical (1, 1) Pixels
2, N, n, -, n -Y;
Canonical (%2, y 2) (N, y 2)
Map lines to S
Screen along the 5 creen
Z axis in (+)ve Geometry n,
direction.
r-]X
2
(Y2, %) (Y2, %)

('11 '1)

Xpixel nX/2 0 (nX_ 1)/2 Xcaonical
Ypixel 0 nJ/2 (n-1)/2 Ycanonical

1 0 1 1

For now simply
ignore
The z-values
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Orthographic Projection

What happens if we don’t have a canonical view volume?
(alos, what happened to Z in the previous example? p162)

Oi\r | o(rt,f)  (l,b,n)=(lower, bottom, near)
b (r.t,f)= (right, top, front)

(I,bma .
Left plane > X->Right Plane

Find matrix M s.t. Bottom plane >Y->Top Plane

M.a and M.b are in canonical view
volume. e.g lines in Orthographic Near plane >Z->Far Plane

view volume above
Bounded by axis aligned planes
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Orthographic View Volume

Right Handed System
Gaze (or camera view)
along —Z direction
(noten>f)

X to the right and y up

The transform we want is just a scale and translate.
It takes:
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Scale then translate

X

Z

canonical

canonical

ycanonical _

1

2/(r-) 0 0 0
0 2/(t-b) 0 0
0 0 2/(n-f) 0
0 0 0 1

o o o k-

nis less (-)ve than f x

0
0
1
0

o O —» O

:’1
i £ & =)

-(1+r)/2

-(b+t)/2

-(n+)/2
1

R N < X

The earlier transform (p6) took canonical coords and put them on the
Screen. Combining that with the above (and adding in the canonical z):

M,

<

nj2 0 0
_|lo nn2o
0 0 1
0 0 0
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(n-1)/2
(n,-1)/2
0
1

o O O k-
o O —» O

2/(r-) 0 0 0

0 2/(t-b) 0 0

0 0 2/(n-f) 0

0 0 0 1
CSC 305 2007

(1+1)2
(b+)/2
(n+)12




Orthographic Projection:

Now we can find pixel coordinates from some user defined view
volume coordinates:

Xcanonical

ycanonical — M
0

annonical

1

P N < X

Note that z will be in [-1,1] useful later for z-buffer
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Another Way of looking at this

Map: [a,b] =[0,1]
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Map: [a,b] =[0,1]

e Translate to Origin

la,b| > [a—a,b-a]=[0,b-a]
e Map X to translated interval

X —> X—d
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Map:[a,b] =[0,1]

e Normalize the interval

1
0,b— —a,b—-a|=1]01
0.0-a]> - [a-ab-a]=[o1]
e Map X to normalized interval
X > X—a
b—a
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Scale and translate

&) el 6=

0 1110 1|1 1

—— _ _
x(pia) Tx(®

This i1s a homogeneous form for 1D
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Map:[a,b] = [0,1]

1 00 1 0 —allXx {x—aj
b—a b—a
0 1 0|0 1 O1llyl=| VY

Y Y (starts to look

like a window to

1 view
- _ port
S X( h— aj T X ( a) transformation)
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Map: [a,b] = [-1,1]
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Map: [a,b] = [-1,1]

e Translate center of interval to origin

a+b

X—> | X—

e Normalize interval to [-1,1]
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Map: [a,b] = [c,d]

e First map [a,b] to [0,1] Sx( 1 j
—(We already did this)

e Then map [0,1] to [c,d]
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Map: [0,1] =2 [c,d ]

e Scale [0,1] by [c,d]
e Then translate by C

e Thatis, in 1D homogeneous form:

1 c _(d—c) 0] X] (d—c)x+c
0 1)l o 1)1 1

A4
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All

ogether: Map: [a,b] = [c,d ]

1 c]|[(d-c) O (bij ol[1 -a
—a
I 11 VO 1] 0 1 0 1
2. Map [0,1]>[c,d] ) M

1. Map [a,b]=>[0,1]

(H 1 -—a]| X
= b—a

0 1
O e T |0 LI
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Now Map Rectangles

(u max ’ Vmax
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Transformation in X and y

1 0 U llA, 0 0OJf[1 0 =x.|[x
0 1 Voull 0 A, 0[O0 L -y ||y
00 10 0 100 1 |1
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This is a Viewport Transformation

e Good for mapping objects from one

coordinate system to another

e This is what we do with windows and

viewports
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Window to Viewport Transform Revisited:

10 Umin ﬂ«x 0 0|j1 O _Xmin
0 1 Vimin 0 ﬂ/y 0|0 1 - ymin
0 O 1 0 0O 1(|0 O 1 i
nr2o o oeayd [2en 0o o o]l [t o0 o -gn2]
M= [0 n20 e Jo 2w 0 o [0 10 (b
0 0 1 0 0 0 2[(n-f) O |0 O 1 -(n+f)/2
_O 0 O 1 0 0 0 11 |10 0 O 1 N

Remember M,? Another Window to Viewport Transform
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Orthographic Projection Algorithm

compute M,

for each line segment in 3D (a;, b;) do {
P = Mo,
q = Mb;
drawline(x,, ¥, Xg: Yq)

}
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Arbitrary View Positions

e = Eye Position
g = gaze direction
t = view up vector

V

Derive a coordinate system
with origin e and uvw basis

_. 9
l9]]
_ txW
U=
[t x W
V=W x U

View up vector points to the sky! Bi-sects the viewers head

as in photography.
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Arbitrary View Positions

View volume coordinates:
origin o and Xxyz axes.

(=l v=b,w=n)

need to convert these to
origin e and uvw axes.

We can use:
'x, y,z, OJ[1 0 0 x|
M, = X, Y, z, O 0O 1 0 -y,
Xy, Yo Zy 0110 O 1 -z
O 0 0 1 O 0 0 1
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Orthographic Projection Algorithm

Arbitrary View Point

compute M,

compute M,

M=M,M,

for each line segment in 3D (a;, b;) do {
p = Ma;
q = Mb;
drawline(X,, ¥, Xg: Yq)

}
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