

Perspective Viewing Transformation

- Tools for creating and manipulating a "camera" that produces pictures of a 3D scene
- Viewing transformations and projections
- Perform <u>culling</u> or back-face elimination

The Illusion of Depth

Perception is an active organising process Many cues to depth!

Canonical View Volume

(as per p160 Shirley)

Object to map lines in the canonical view volume to the screen.

 $(x,y,z) \in [-1, 1]^3$ (as in interval [a,b])

For now assume that all line segments are in the view volume (clipping later!)

Note Y will be up in next edition of Shirley!

Mapping to the screen

(as per p161 Shirley)

Screen n_x by n_y pixels

 $x = -1 \rightarrow left side of screen$

 $x = +1 \rightarrow right side of screen$

 $y = -1 \rightarrow bottom of screen$

 $y = +1 \rightarrow top of screen$

Maps square $[-1, +1]^2$ to non-square

page 5

scales S_x and S_v will be defined.

As Before a

Window to Viewport Transform

For now simply ignore
The z-values

Orthographic Projection

What happens if we don't have a canonical view volume? (alos, what happened to Z in the previous example? p162)

(1,b,n) = (lower, bottom, near)(r,t,f)=(right, top, front)

Find matrix M s.t.

M.a and M.b are in canonical view volume. e.g lines in Orthographic view volume above Bounded by axis aligned planes Left plane →X→Right Plane

Bottom plane →y→Top Plane

Near plane →Z→Far Plane

Orthographic View Volume

Right Handed System
Gaze (or camera view)
along –Z direction
(note n > f)
x to the right and y up

The transform we want is just a scale and translate. It takes:

transforms to transforms to
$$y = b \rightarrow y = -1$$
, $y = t \rightarrow y = +1$
 $x = 1 \rightarrow x = -1$, $x = r \rightarrow x = +1$
 $z = n \rightarrow z = 1$, $z = f \rightarrow z = -1$

Scale then translate

n is less (-)ve than f

$$\begin{bmatrix} x_{\text{canonical}} \\ y_{\text{canonical}} \\ z_{\text{canonical}} \\ 1 \end{bmatrix} = \begin{bmatrix} 2/(\text{r-l}) & 0 & 0 & 0 \\ 0 & 2/(\text{t-b}) & 0 & 0 \\ 0 & 0 & 2/(\text{n-f}) & 0 \\ 0 & 0 & 1 & 0 & -(\text{b+t})/2 \\ 0 & 0 & 1 & -(\text{n+f})/2 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

The earlier transform (p6) took canonical coords and put them on the Screen. Combining that with the above (and adding in the canonical z):

$$\mathbf{M_0} = \begin{bmatrix} \mathbf{n_x/2} & 0 & 0 & (\mathbf{n_x-1})/2 \\ 0 & \mathbf{n_y/2} & 0 & (\mathbf{n_y-1})/2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2/(\mathbf{r-1}) & 0 & 0 & 0 \\ 0 & 2/(\mathbf{t-b}) & 0 & 0 \\ 0 & 0 & 2/(\mathbf{n-f}) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Orthographic Projection:

Now we can find pixel coordinates from some user defined view volume coordinates:

$$\begin{array}{c|ccc}
x_{\text{canonical}} & & & & & \\
y_{\text{canonical}} & & & & & \\
z_{\text{canonical}} & & & & & \\
1 & & & & & \\
\end{array}$$

Note that z will be in [-1,1] useful later for z-buffer

Another Way of looking at this

$$Map: [a,b] \Rightarrow [0,1]$$

$Map: [a,b] \Rightarrow [0,1]$

Translate to Origin

$$[a,b] \rightarrow [a-a,b-a] = [0,b-a]$$

Map x to translated interval

$$x \rightarrow x - a$$

$Map:[a,b] \Rightarrow [0,1]$

Normalize the interval

$$[0,b-a] \to \frac{1}{b-a}[a-a,b-a] = [0,1]$$

Map X to normalized interval

$$x \to \frac{x - a}{b - a}$$

Scale and translate

$$\begin{bmatrix} \begin{pmatrix} 1 \\ \overline{b-a} \end{pmatrix} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} x-a \\ \overline{b-a} \end{pmatrix} \\ 1 \end{bmatrix}$$

$$S_{x} \begin{pmatrix} \frac{1}{b-a} \end{pmatrix} \qquad T_{x}(-a)$$

This is a homogeneous form for 1D

$Map:[a,b] \Rightarrow [0,1]$

$$\begin{bmatrix} \frac{1}{b-a} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -a \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{x-a}{b-a} \\ y \\ 1 \end{bmatrix}$$

$$S_{x}\left(\frac{1}{b-a}\right)$$

$$T_{\mathcal{X}}(-a)$$

(starts to look like a window to viewport transformation)

$Map: [a,b] \Rightarrow [-1,1]$

$Map: [a,b] \Rightarrow [-1,1]$

Translate center of interval to origin

$$x \to \left\lceil x - \frac{a+b}{2} \right\rceil$$

Normalize interval to [-1,1]

$$\left[x - \frac{a+b}{2}\right] \to \frac{2}{b-a} \left[x - \frac{a+b}{2}\right]$$

$Map: [a,b] \Rightarrow [c,d]$

- First map [*a*,*b*] to [0,1]
 - (We already did this)

$$\int_{a}^{S_{\mathcal{X}}} \left(\frac{1}{b-a} \right)$$

$$T_{\mathcal{X}}(-a)$$

• Then map [0,1] to [c,d]

 $Map: [0,1] \Rightarrow [c,d]$

- Scale [0,1] by [*c*,*d*]
- Then translate by c
- That is, in 1D homogeneous form:

$$\begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix} \begin{bmatrix} (d-c) & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} (d-c)x+c \\ 1 \end{bmatrix}$$

All Together: Map: [a,b] \Rightarrow [c,d]

$$\begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix} \begin{bmatrix} (d-c) & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \left(\frac{1}{b-a}\right) & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$$

2. Map $[0,1] \rightarrow [c,d]$

1. Map $[a,b] \rightarrow [0,1]$

$$= \begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{d-c}{b-a} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$$

Now Map Rectangles

 (u_{\max}, v_{\max})

 $(\chi_{\min}, \gamma_{\min})$

Transformation in x and y

$$\begin{bmatrix} 1 & 0 & u_{\min} \\ 0 & 1 & v_{\min} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_x & 0 & 0 \\ 0 & \lambda_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -\chi_{\min} \\ 0 & 1 & -y_{\min} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

where,
$$\lambda_x = \left(\frac{u_{\text{max}} - u_{\text{min}}}{x_{\text{max}} - x_{\text{min}}}\right)$$
, $\lambda_x = \frac{v_{\text{max}} - v_{\text{min}}}{y_{\text{max}} - y_{\text{min}}}$

This is a Viewport Transformation

- Good for mapping objects from one coordinate system to another
- This is what we do with windows and viewports

Window to Viewport Transform Revisited:

$$\begin{bmatrix} 1 & 0 & u_{\min} \\ 0 & 1 & v_{\min} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_x & 0 & 0 \\ 0 & \lambda_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_{\min} \\ 0 & 1 & -y_{\min} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\mathbf{M_0} = \begin{bmatrix} \mathbf{n_x/2} & 0 & 0 & (\mathbf{n_x-1})/2 \\ 0 & \mathbf{n_y/2} & 0 & (\mathbf{n_y-1})/2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2/(\mathbf{r-l}) & 0 & 0 & 0 \\ 0 & 2/(\mathbf{t-b}) & 0 & 0 \\ 0 & 0 & 2/(\mathbf{n-f}) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -(1+\mathbf{r})/2 \\ 0 & 1 & 0 & -(\mathbf{b+t})/2 \\ 0 & 0 & 1 & -(\mathbf{n+f})/2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Remember M₀? Another Window to Viewport Transform

Orthographic Projection Algorithm

```
\label{eq:compute M0} \begin{split} \text{for each line segment in 3D } (a_i,\,b_i) \; \text{do } \{ \\ p &= M_0 a_i \\ q &= M_0 b_i \\ \text{drawline}(x_p,\,y_p,\,x_q,\,y_q) \\ \} \end{split}
```


Arbitrary View Positions

e = Eye Position

g = gaze direction

t = view up vector

Derive a coordinate system with origin e and uvw basis

$$W = -\frac{g}{||g||}$$

$$U = \frac{t \times W}{||t \times W||}$$

$$V = W \times U$$

View up vector points to the sky! Bi-sects the viewers head as in photography.

Arbitrary View Positions

View volume coordinates: origin o and xyz axes.

need to convert these to origin e and uvw axes.

We can use:

$$\mathbf{M_v} = \begin{bmatrix} x_u & y_u & z_u & 0 \\ x_v & y_v & z_v & 0 \\ x_w & y_w & z_w & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -x_e \\ 0 & 1 & 0 & -y_e \\ 0 & 0 & 1 & -z_e \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Orthographic Projection Algorithm

Arbitrary View Point

```
\begin{aligned} & compute \ M_v \\ & compute \ M_0 \\ & M = M_0 \ M_v \\ & for \ each \ line \ segment \ in \ 3D \ (a_i, \, b_i) \ do \ \{ \\ & p = Ma_i \\ & q = Mb_i \\ & drawline(x_p, \, y_p, \, x_q, \, y_q) \\ \} \end{aligned}
```

