CSC 305
The Graphics
Pipeline-1

by Brian Wyvill

The University of Victoria
Graphics Group

Perspective Viewing Transformation

RNy

arthographic projeciion parzpective projeciion hEflen Ines reinceed

o Tools for creating and manipulating a “camera” that
produces pictures of a 3D scene

Viewinq transformations and projections
Perform culling or back-face elimination

< University of Victoria Graphics Lab. CSC 305 2007

The Hlusion of Depth

<

~

N

e

N\
/

N

Perception Is an active organising process

Many cues to depth!

University of Victoria Graphics Lab.

CSC 305 2007

Click Me

Canonical View Volume
(as per p160 Shirley)

Object to map lines in the
canonical view volume to
the screen.

(xy.z) € [-1, 1°

(as in interval [a,b])

For now assume that all
line segments are in the
view volume (clipping
later!)

(—13-1,-1)‘-"‘\&

Note Y will be up in next edition of Shirley!

< University of Victoria Graphics Lab. CSC 305 2007

Mapping to the screen

(as per pl61 Shirley)
Pixel Geometry
(%, %) (%, %)
I(O,O)
(Yo,) (%, %)
(1, 1)
Map lines to
Screen along the
Z axis in (+)ve 2
direction.
— 2
('11 '1)
< University of Victoria Graphics Lab. CSC 305 2007

Screen n, by n, pixels

X = -1 -> left side of screen
X = +1 = right side of screen
y = -1 - bottom of screen
y = +1 -> top of screen

Maps square [-1, +1]° to non-square

scales S, and S, will be defined.

(-"2, n-Y2)

(N2, N2)

Screen
» Geometry
ny
nX
(-72, -%2) (N2, -2)

As Before a

Window to Viewport Transform

Canonical (1, 1) Pixels
2, N, n, -, n -Y;
Canonical (%2, y 2) (N, y 2)
Map lines to S
Screen along the 5 creen
Z axis in (+)ve Geometry n,
direction.
r-]X
2
(Y2, %) (Y2, %)

('11 '1)

Xpixel nX/2 0 (nX_ 1)/2 Xcaonical
Ypixel 0 nJ/2 (n-1)/2 Ycanonical

1 0 1 1

For now simply
ignore
The z-values

< University of Victoria Graphics Lab. CSC 305 2007

Orthographic Projection

What happens if we don’t have a canonical view volume?
(alos, what happened to Z in the previous example? p162)

Oi\r | o(rt,f) (l,b,n)=(lower, bottom, near)
b (r.t,f)= (right, top, front)

(I,bma .
Left plane > X->Right Plane

Find matrix M s.t. Bottom plane >Y->Top Plane

M.a and M.b are in canonical view
volume. e.g lines in Orthographic Near plane >Z->Far Plane

view volume above
Bounded by axis aligned planes

< University of Victoria Graphics Lab. CSC 305 2007

Orthographic View Volume

Right Handed System
Gaze (or camera view)
along —Z direction
(noten>f)

X to the right and y up

The transform we want is just a scale and translate.
It takes:

< University of Victoria Graphics Lab. CSC 305 2007

Scale then translate

X

Z

canonical

canonical

ycanonical _

1

2/(r-) 0 0 0
0 2/(t-b) 0 0
0 0 2/(n-f) 0
0 0 0 1

o o o k-

nis less (-)ve than f x

0
0
1
0

o O —» O

:’1
i £ & =)

-(1+r)/2

-(b+t)/2

-(n+)/2
1

R N < X

The earlier transform (p6) took canonical coords and put them on the
Screen. Combining that with the above (and adding in the canonical z):

M,

<

nj2 0 0
_|lo nn2o
0 0 1
0 0 0

University of Victoria Graphics Lab.

(n-1)/2
(n,-1)/2
0
1

o O O k-
o O —» O

2/(r-) 0 0 0

0 2/(t-b) 0 0

0 0 2/(n-f) 0

0 0 0 1
CSC 305 2007

(1+1)2
(b+)/2
(n+)12

Orthographic Projection:

Now we can find pixel coordinates from some user defined view
volume coordinates:

Xcanonical

ycanonical — M
0

annonical

1

P N < X

Note that z will be in [-1,1] useful later for z-buffer

< University of Victoria Graphics Lab. CSC 305 2007

Another Way of looking at this

Map: [a,b] =[0,1]

< University of Victoria Graphics Lab. CSC 305 2007

Map: [a,b] =[0,1]

e Translate to Origin

la,b| > [a—a,b-a]=[0,b-a]
e Map X to translated interval

X —> X—d

< University of Victoria Graphics Lab. CSC 305 2007

Map:[a,b] =[0,1]

e Normalize the interval

1
0,b— —a,b—-a|=1]01
0.0-a]> - [a-ab-a]=[o1]
e Map X to normalized interval
X > X—a
b—a

< University of Victoria Graphics Lab. CSC 305 2007

Scale and translate

&) el 6=

0 1110 1|1 1

—— _ _
x(pia) Tx(®

This i1s a homogeneous form for 1D

< University of Victoria Graphics Lab. CSC 305 2007

Map:[a,b] = [0,1]

1 00 1 0 —allXx {x—aj
b—a b—a
0 1 0|0 1 O1llyl=| VY

Y Y (starts to look

like a window to

1 view
- _ port
S X(h— aj T X (a) transformation)

< University of Victoria Graphics Lab. CSC 305 2007

Map: [a,b] = [-1,1]

< University of Victoria Graphics Lab. CSC 305 2007

Map: [a,b] = [-1,1]

e Translate center of interval to origin

a+b

X—> | X—

e Normalize interval to [-1,1]

< University of Victoria Graphics Lab. CSC 305 2007

Map: [a,b] = [c,d]

e First map [a,b] to [0,1] Sx(1 j
—(We already did this)

e Then map [0,1] to [c,d]

< University of Victoria Graphics Lab. CSC 305 2007

Map: [0,1] =2 [c,d]

e Scale [0,1] by [c,d]
e Then translate by C

e Thatis, in 1D homogeneous form:

1 c _(d—c) 0] X] (d—c)x+c
0 1)l o 1)1 1

A4

< University of Victoria Graphics Lab. CSC 305 2007

All

ogether: Map: [a,b] = [c,d]

1 c]|[(d-c) O (bij ol[1 -a
—a
I 11 VO 1] 0 1 0 1
2. Map [0,1]>[c,d]) M

1. Map [a,b]=>[0,1]

(H 1 -—a]| X
= b—a

0 1
O e T |0 LI
< University of Victoria Graphics Lab. CSC 305 2007

Now Map Rectangles

(u max ’ Vmax

< University of Victoria Graphics Lab. CSC 305 2007

Transformation in X and y

1 0 U llA, 0 0OJf[1 0 =x.|[x
0 1 Voull 0 A, 0[O0 L -y ||y
00 10 0 100 1 |1

< University of Victoria Graphics Lab. CSC 305 2007

This is a Viewport Transformation

e Good for mapping objects from one

coordinate system to another

e This is what we do with windows and

viewports

< University of Victoria Graphics Lab. CSC 305 2007

Window to Viewport Transform Revisited:

10 Umin ﬂ«x 0 0|j1 O _Xmin
0 1 Vimin 0 ﬂ/y 0|0 1 - ymin
0 O 1 0 0O 1(|0 O 1 i
nr2o o oeayd [2en 0o o o]l [t o0 o -gn2]
M= [0 n20 e Jo 2w 0 o [0 10 (b
0 0 1 0 0 0 2[(n-f) O |0 O 1 -(n+f)/2
_O 0 O 1 0 0 0 11 |10 0 O 1 N

Remember M,? Another Window to Viewport Transform

< University of Victoria Graphics Lab.

CSC 305 2007

Orthographic Projection Algorithm

compute M,

for each line segment in 3D (a;, b;) do {
P = Mo,
q = Mb;
drawline(x,, ¥, Xg: Yq)

}

< University of Victoria Graphics Lab. CSC 305 2007

Arbitrary View Positions

e = Eye Position
g = gaze direction
t = view up vector

V

Derive a coordinate system
with origin e and uvw basis

_. 9
l9]]
_ txW
U=
[t x W
V=W x U

View up vector points to the sky! Bi-sects the viewers head

as in photography.

< University of Victoria Graphics Lab.

CSC 305 2007

Arbitrary View Positions

View volume coordinates:
origin o and Xxyz axes.

(=l v=b,w=n)

need to convert these to
origin e and uvw axes.

We can use:
'x, y,z, OJ[1 0 0 x|
M, = X, Y, z, O 0O 1 0 -y,
Xy, Yo Zy 0110 O 1 -z
O 0 0 1 O 0 0 1

< University of Victoria Graphics Lab. CSC 305 2007

Orthographic Projection Algorithm

Arbitrary View Point

compute M,

compute M,

M=M,M,

for each line segment in 3D (a;, b;) do {
p = Ma;
q = Mb;
drawline(X,, ¥, Xg: Yq)

}

< University of Victoria Graphics Lab. CSC 305 2007

