CPSC 453 Linear Algebra Review

Kelly Poon

September 16, 2004

1 Vector Operations

1.1 Addition

Given $\vec{v}, \vec{w} \in \mathbb{R}^n$:

$$\vec{v} + \vec{w} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \\ \vdots \\ v_n + w_n \end{bmatrix}$$

1.2 Scalar Multiplication

Given $\vec{v} \in \mathbb{R}^n, s \in \mathbb{R}$:

$$s ec{v} = \left[egin{array}{c} s v_1 \ s v_2 \ dots \ s v_n \end{array}
ight]$$

1.3 Dot Product

Given $\vec{v}, \vec{w} \in \mathbb{R}^n$:

$$\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + \ldots + v_n w_n$$

Another way to calculate the dot product: Given \vec{v}, \vec{w} with $\angle \vec{v} \vec{w} = \theta$:

$$\vec{v} \cdot \vec{w} = \|\vec{v}\| \|\vec{w}\| \cos \theta$$

1.3.1 Properties of the Dot Product

Given vectors $\vec{u}, \vec{v}, \vec{w}$ and scalar s, the following properties hold:

- Commutative $\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v}$
- Associative $(s\vec{v}) \cdot \vec{w} = s(\vec{v} \cdot \vec{w})$
- Distributive $\vec{u} \cdot (\vec{v} \cdot \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$

1.3.2 Uses of the Dot Product

• From the dot product we can define the length of a vector, \vec{v} .

$$\|\vec{v}\|^2 \equiv \vec{v} \cdot \vec{v}$$

We can find the length, $\|\vec{v}\|$, of a three-dimensional vector, $\vec{v} \in \mathbb{R}^3$:

$$\|\vec{v}\| = \sqrt{v_1 * v_1 + v_2 * v_2 + v_3 * v_3}$$

- We can define the concept of orthogonality. We say two vectors, \vec{v}, \vec{w} are orthogonal (perpendicular) if $\vec{v} \cdot \vec{w} = 0$
- Given vectors, \vec{v} , \vec{w} we can find the projection, \vec{p} , of \vec{w} onto \vec{v} .

$$ec{p} = rac{ec{v} \cdot ec{w}}{ec{v} \cdot ec{v}} ec{v}$$

• Given vectors, \vec{v} , \vec{w} and the projection, \vec{p} , of \vec{v} onto \vec{w} we can find a vector, \vec{q} orthogonal to \vec{v} .

$$\vec{q} = \vec{w} - \vec{p}$$

1.4 Cross Product

Given $\vec{v}, \vec{w} \ \epsilon \ \mathbb{R}^3$

$$ec{v} imes ec{w} = \left[egin{array}{c} v_2 w_3 - v_3 w_2 \ v_1 w_3 - v_3 w_1 \ v_1 w_2 - v_2 w_1 \end{array}
ight]$$

We can calculate the magnitude of the cross product: Given \vec{v}, \vec{w} with $\angle \vec{v} \vec{w} = \theta$

$$\|\vec{v} \times \vec{w}\| = \|\vec{v}\| \|\vec{w}\| \sin \theta$$

1.4.1 Properties of the Cross Product

Given vectors $\vec{u}, \vec{v}, \vec{w}$ and scalar s, the following properties hold:

- $\bullet \ \vec{v} \times \vec{w} = -\vec{w} \times \vec{v}$
- Distributive $\vec{u} \times (\vec{v} \cdot \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$
- Associative $(s\vec{v}) \times \vec{w} = s(\vec{v} \times \vec{w})$

1.4.2 Uses of the Cross Product

• Given vectors \vec{v}, \vec{w} we can find a vector \vec{u} which is perpendicular to both \vec{v} and \vec{w} .

$$\vec{u} = \vec{v} \times \vec{w}$$

• If the cross product of two vectors is 0, that means the vectors are colinear.

2 Vector Spaces

A vector space over \mathbb{R}^n is a set of vectors, for which any vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and any scalars $r, s \in \mathbb{R}$ have the following properties:

• Closure under addition:

$$\vec{v} + \vec{w} \in \mathbb{R}^n$$

• Associative property of addition:

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

• Commutative property of addition:

$$\vec{v} + \vec{w} = \vec{w} + \vec{v}$$

• Additive identity of addition:

$$\vec{v} + \vec{0} = \vec{0} + \vec{v} = \vec{v}$$

• Additive inverse:

$$\vec{v} + \vec{-v} = \vec{-v} + \vec{v} = \vec{0}$$

• Closure under scalar multiplication:

$$s\vec{v} \in \mathbb{R}^n$$

• Associative property of scalar multiplication:

$$r(s\vec{v}) = (rs)\vec{v}$$

• Distributive properties of addition:

$$s(\vec{v} + \vec{w}) = s\vec{v} + s\vec{w}$$
 and $(r + s)\vec{v} = r\vec{v} + s\vec{v}$

• Identity for scalar multiplication:

$$1\vec{v} = \vec{v}$$

2.1 Some useful vector space definitions

- The vectors $\vec{v}_1, \ldots, \vec{v}_k$ in a vector space V span a subspace S if every $\vec{v} \in S$ can be written $\vec{v} = \alpha_1 \vec{v}_1, \ldots, \alpha_k \vec{v}_k$ where $\alpha_i \in \mathbb{R}$ for all $1 \leq i \leq k$.
- The vectors $\vec{v}_1, \ldots, \vec{v}_k$ in a vector space V are linearly independent if $\alpha_1 \vec{v}_1, \ldots, \alpha_k \vec{v}_k = 0$ iff $\alpha_i = 0$ for all $1 \leq i \leq k$.
- The vectors $\vec{v}_1, \ldots, \vec{v}_n$ form a basis for V if they are linearly independent and they span V.
- The dimension of a vector space V is the number of vectors in any basis for V.
- A collection of vectors $\vec{v}_1, \ldots, \vec{v}_k$ is mutually orthogonal if each pair \vec{v}_i, \vec{v}_j with $i \neq j$ is orthogonal.
- A basis consisting of mutually orthogonal vectors is called an *orthogonal* basis. If the vectors are also unit vectors then the basis is called an *orthonormal* basis.

3 Matrix Operations

3.1 Addition

Given $A, B \in \mathbb{R}^{m \times n}$:

$$A + B = \begin{bmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & \dots & a_{2n} + b_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{bmatrix}$$

3.2 Scalar Multiplication

Given $A \in \mathbb{R}^{m \times n}$ and $s \in \mathbb{R}$:

$$sA = \begin{bmatrix} sa_{11} & \dots & sa_{1n} \\ sa_{21} & \dots & sa_{2n} \\ \vdots & \ddots & \vdots \\ sa_{m1} & \dots & sa_{mn} \end{bmatrix}$$

3.3 Vector Multiplication

Given $A \in \mathbb{R}^{m \times n}$ and $\vec{v} \in \mathbb{R}^n$:

$$A\vec{v} = \begin{bmatrix} a_{11}v_1 + \dots + a_{1n}v_n \\ a_{21}v_1 + \dots + a_{2n}v_n \\ \vdots \\ a_{m1}v_1 + \dots + a_{mn}v_n \end{bmatrix}$$