
SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab.2000; 10: 149–170

State generation and
automated class testing

Thomas Ball1,‡, Daniel Hoffman2,*,†, Frank Ruskey2,§,
Richard Webber3,z and Lee White4,Û

1Microsoft Research, One Microsoft Way, Redmond, WA 98052, U.S.A.
2Department of Computer Science, University of Victoria, P.O. Box 3055 MS7209, Victoria, B.C.,
V8W 3P6 Canada
3Department of Computer Science, University of Melbourne, Gratton Street, Parkville 3052 Australia
4Department of Computer Engineering and Science, Case Western Reserve University, Olin Building,
10900 Euclid Ave., Cleveland, OH 44106-7071, U.S.A.

SUMMARY

The maturity of object-oriented methods has led to the wide availability of container classes:
classes that encapsulate classical data structures and algorithms. Container classes are included
in the C11 and Java standard libraries, and in many proprietary libraries. The wide availability
and use of these classes makes reliability important, and testing plays a central role in achieving
that reliability. The large number of cases necessary for thorough testing of container classes
makes automated testing essential. This paper presents a novel approach for automated testing
of container classes based on combinatorial algorithms for state generation. The approach is
illustrated with black-box and white-box test drivers for a class implemented with the red–black
tree data structure, used widely in industry and, in particular, in the C11 Standard Template
Library. The white-box driver is based on a new algorithm for red–black tree generation. The
drivers are evaluated experimentally, providing quantitative measures of their effectiveness in
terms of block and path coverage. The results clearly show that the approach is affordable in
terms of development cost and execution time, and effective with respect to coverage achieved.
The results also provide insight into the relative advantages of black-box and white-box drivers,
and into the difficult problem of infeasible paths. Copyright  2000 John Wiley & Sons, Ltd.

key words: automated testing; object-oriented; black-box; white-box; C++

*Correspondence to: Daniel Hoffman, Department of Computer Science, University of Victoria, P.O. Box 3055
MS7209, Victoria, B.C., V8W 3P6 Canada
†E-mail: dhoffmanKcsr.uvic.ca
‡E-mail: tballKmicrosoft.com
§E-mail: fruskeyKcsr.uvic.ca
zE-mail: rwebberKcs.mu.oz.au
ÛE-mail: leewKalpha.ces.cwru.edu

Copyright 2000 John Wiley & Sons, Ltd. Received 12 May 1999
Accepted 1 June 2000

150 T. BALL ET AL.

1. INTRODUCTION

With object-oriented methods, productivity and reliability can be vastly improved, primarily
through reuse. Container classes offer significant potential for reuse, giving programmers
access to efficient implementations of data types such as set, vector and map. Container
classes are now provided in the C11 and Java standard libraries, and in many proprietary
libraries as well. With such widespread availability, the cost of errors is high, making
reliability important.

Because container classes are usually implemented using ‘textbook’ algorithms and data
structures, they do not suffer from the flagrant requirements and usability problems so
common in today’s application software. None the less, container implementations do
frequently contain faults, as an earlier study [1] and an online bug database [2] clearly
demonstrate. Further, because programmers expect container failures to be rare, an application
failure caused by a container failure is expensive to fix; the debugging takes a long time
because the last place checked is the container implementation.

1.1. The need for automation in container class testing

Significant automation is essential for thorough container class testing due to the large
number of test cases required and the need to rerun the test suites repeatedly. Thorough
testing will involve many internal states, many method calls, and many values for each
method parameter. Because the combinations of these state and parameter values are
important, thorough test suites will routinely involve tens of thousands of test cases. As a
result, automated input generation and output checking are essential. In conventional testing,
the expected output is often stored in a ‘gold file’, manually checked for correctness. In
each test run, the actual output is captured in another file and compared automatically with
the gold file. The gold file approach is typically infeasible for container testing: the gold
files are simply too large to be checked manually.

Each test suite for a class will be run not once, but many times: for the initial version,
after each modification, and in each distinct environment, such as the new version of an
operating system or compiler. Ideally, a change in environment should not require retesting
of a class. With current technology, however, class behaviouris often affected by environment
changes. For example, there is considerable variation across C11 compilers, especially
regarding templates, exceptions and name spaces, which are key features for class libraries.
Classes that run correctly with one compiler may not even compile with another.

1.2. Class testing based on state generation

While each container class has its own unique testing needs, a strategy that produces effective
test drivers for many container classes is shown in Figure 1. From the vast number of
possible states, the tester chooses to cover a much smaller setS of ‘base states’ likely to
expose faults in the classC under test. The choice of base states depends on the data
structures and algorithms in the class under test. The tester must determine a way to generate
each states in S and to check whetherC behaves properly ins. The latter is accomplished

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

AUTOMATED CLASS TESTING 151

Figure 1. A generic component testing strategy.

with ‘set calls’ that perturbs slightly, yielding s9, and ‘get calls’ that querys and s9 without
changing them. To apply this strategy to a particular class, three tasks must be carried out.

(1) Generate the set of base statesS.
(2) Determine the set calls to be issued.
(3) Develop atest oracle: the code to check the get call return values froms and s9.

For task (1), an algorithm must be found in the literature or custom developed. The algorithm
should be efficient enough that the test execution time is dominated by set and get call
invocations, i.e. so that state generation is not the bottleneck in the test process. Tasks (1)
and (2) must be solved with task (3) clearly in mind. Otherwise, the oracle will be too
expensive to develop. Without a practical oracle, a generation algorithm is of no value to
the tester.

1.3. IntSet : the class-under-test

To illustrate the approach shown in Figure 1, a number of test drivers are presented for the
IntSet class, whose public member functions are shown in Figure 2. The constructor, copy
constructor, and destructor provide the obvious functionality. The calladd (i) adds i to the
set and has no effect ifi is already present. The callremove (i) removesi from the set
and is ignored ifi is not present. Finally,isMember (i) returns true or false according to
whether i is present. All of theIntSet implementations tested use a red–black tree data
structure and the add and remove algorithms described by Cormen, Leiserson and Rivest
[3]. While red–black trees are a textbook data structure, the published algorithms contain
important differences in the approaches used for node insertion and deletion.

Figure 2. Class declaration for the class-under-test.

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

152 T. BALL ET AL.

1.4. Black-box and white-box testing

Black-box and white-box testing differ in two important ways: the motivation for selecting
test cases and the way the test drivers access the code-under-test.

I Test-case selection. In black-box testing, test case selection is based solely on the
specification. In contrast, white-box test case selection is influenced by the implemen-
tation data structures and algorithms. For example, the same black-box test suite would
be used both for anIntSet red–black tree implementation and for an unordered
linked-list implementation. A white-box test suite, however, would differ significantly
for these two implementations, e.g. with a red–black tree, insertion order is important.

I Test-driver access. In black-box testing, the driver accesses the class-under-test (CUT)
strictly through the public member functions. White-box tests, however, may involve
direct access to private data, or modification of the implementation. For example, a
white-box test may add member functions solely for test purposes.

Generally, black-box tests are simpler to implement and maintain. White-box tests are more
complex and expensive, but may provide more effective testing.

The approach is illustrated with several test drivers for theIntSet class. Two basic
approaches to state generation (task(1)) are explored: black-box approaches that generate
states by adding integers to the set by method calls, and white-box approaches that generate
states by a combinatorial algorithm that generates every red–black tree withN nodes. In
both approaches, the set elements are the same—{2,4,. . .,2N}. These values were chosen for
two reasons: they are easy to generate and there is room between each pair of elements to
add a new element in task (2). Tasks (2) and (3) are handled identically in all the drivers;
in task (2),add and remove are called for every element in [2..2N], and in task (3) every
element in [2..2N] is checked for membership.

While exhaustive testing is typically impossible, this approach is quasi-exhaustive in the
sense that all test cases of a certain type are executed, e.g. all red–black trees withN nodes.
As expected, the number of test cases is often large, frequently exceeding 100 000 cases,
where each get call is considered a test case. Because container classes are usually efficient,
if the generation algorithm is also efficient then the test execution time is still affordable.

The testing approach provides a way to overcome these problems and to apply the results
of combinatorial generation theory to practical testing problems. The practitioner need not
understand the generation algorithm or its complexity analysis, only the output. The theor-
etician needs to know only the data structure in question.

1.5. Paper organization

Section 2 surveys the relevant research. The remaining sections present and evaluate the test
drivers. For the black-box drivers, state generation is straightforward. For the white-box
drivers, however, this is a complex task. Section 3 presents the only known algorithm for
generating all red–black trees with a given number of nodes, and shows that the algorithm
is efficient in the sense that the cost of testing will be dominated by test execution rather
than state generation. While the detailed analysis in Section 3 is important, the remainder

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

AUTOMATED CLASS TESTING 153

of the paper does not depend on these details. Section 4 describes a white-box test driver
based on red–black tree generation, and two black-box drivers used for comparison purposes.
Section 5 presents the results of running all three drivers, measuring both block and path
coverage. For the white-box driver, test runs were made with all trees of a given size and
with much smaller random samples.

2. RELATED WORK

Research in software test automation can be divided into three broad approaches.

(1) Given some source code, automatically generate test inputs to achieve a given level
of statement, branch or path coverage.

(2) Given a formal specification, automatically generate test cases for an implementation
of that specification.

(3) Given the tester’s knowledge of some source code and its intended behaviour, develop
algorithms that automatically generate inputs and check outputs.

The first approach relies on identifying program paths satisfying the desired coverage
criteria, and calculating a predicate associated with each path. Then constraint-solving
techniques are used to generate a test case for each path. Early work by Clarke [4] and
more recent work by Bertolino and Marre´ [5], Gotlieb et al. [6] and many others illustrates
the approach. While considerable progress has been made over the years, the analysis is
hampered by the presence of pointers, function calls, and complex expressions in predicates.
Even if these problems can be overcome, this approach does not address output checking at
all, which is a significant drawback. For example, the JTest tool [7] is claimed to generate
test inputs that achieve 100 per cent block coverage for Java classes. Output checking is
limited, however, to detecting whether any undeclared exceptions have been thrown. Recent
work in selective regression testing [8] has achieved significant progress. Given a regression
test suite and two versions of a program, these techniques automatically detect which test
cases are guaranteed to produce the same output on both versions.

When a formal specification is available, output checking can be automated as well as
input generation. Early work by Bouge´ et al. [9] and Gannonet al. [10] and more recent
work by Hughes and Stotts [11] and Chenet al. [12] shows how to generate test cases
from an algebraic specification. Dillon and Ramakrishna [13] show how to generate an
oracle from a temporal logic specification. Stocks and Carrington present a test framework
for generating test cases from Z specifications [14]. While these approaches offer great
potential for automation, they are hard to apply in practice because formal specifications for
industrial software are usually unavailable. For example, to the best of the current authors’
knowledge, there are none for the C11 or Java standard class libraries.

When testing is based on the tester’s knowledge, rather than on source code or a formal
specification, some opportunities for automation are lost. This approach does, however, avoid
many of the problems of the previous two approaches, and has seen considerable practical
application. Early work by Panzl [15] provided tools for the regression testing of Fortran
subroutines. The PGMGEN system [16] generates drivers for C modules from test scripts

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

154 T. BALL ET AL.

and the Protest system [17] automates the testing of C modules using test scripts written in
Prolog. The ACE tool [18] supports the testing of Eiffel and C11 classes, and was used
extensively for generating drivers for communications software. The ClassBench framework
[19] generates tests by automatically traversing atestgraph: a graph representing selected
states and transitions of the class under test. The category-partition method [20] provides a
formal language for specifying input domains and a generator tool to produce test cases.
Commercial test data generators are widely available, such as TDGEN [21], which generates
test files based on descriptions of the allowable values in each field in a record. Considerable
work has been done on statistical testing by Cobb and Mills [22], Musaet al. [23] and
others. Here, test case selection is driven by expected usage patterns and test results include
reliability estimates as well as failure reports.

While the research just described is broadly related to this paper, work in two research
areas is quite closely related. Section 3 presents a new algorithm for generating red–black
trees. There are algorithms for generating many other kinds of data structures and discrete
objects, such as binary trees [24], B-trees [25] and partitions of a finite set [26]. Using the
methodology presented in this paper, these algorithms could be used to test applications in
the area of expression trees, databases and data structures for disjoint sets.

Doong and Frank [27] develop black-box drivers and use algebraic specifications for
output checking. Their drivers share the following characteristics with the drivers in this paper:

I container classes are tested;
I input generation and output checking are automated;
I there are large numbers of test cases;
I the drivers are parametrized; and
I experiments are performed exploring the test space and comparing parameter values

and test effectiveness.

There appears to be no other work in the literature presenting drivers and experiments
like these.

3. EFFICIENT RED–BLACK TREE GENERATION

This section describes an algorithm for generating red–black trees and proves that it is
efficient. This is done by first developing an efficient algorithm for generating 2-3-4 trees
and then adapting that algorithm to generate all red–black trees.

3.1. Red–black and 2-3-4 trees

A binary search tree is a binary tree in which every node has an associated key, and such
that an inorder traversal of the tree visits the keys in non-decreasing order (see Reference
[3], Chapter 13). Binary search trees are widely used in computer science, but suffer from
poor worst-case search times due to the imbalance that can occur in the structure of the
tree. Various schemes, such as height-balanced trees, have been proposed to alleviate this
worst-case behaviour, and currently the most popular is the so-called red–black tree. Red–

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

AUTOMATED CLASS TESTING 155

black trees are extended binary search trees that, in addition to the usual requirement that
keys in left subtrees are no greater than those in the corresponding right subtrees, satisfy
the following four properties.

(1) Every node is coloured either red or black.
(2) Every leaf node is coloured black.
(3) If a node is red, then both of its children are black.
(4) Every path from the root to a leaf contains the same number of black nodes. This

number is called the black-height of the tree.

Figure 3 shows a red–black tree whose keys are the first six prime numbers. Black internal
nodes are coloured black, red internal nodes are shaded, and the leaves (think of them as
being coloured black by rule (2)), are shown with squares. These four conditions are
sufficient to ensure that the height of the tree isO(log n), wheren is the number of nodes
in the tree [3].

A 2-3-4 tree is a B-tree of order 4 ([3], p. 385). In other words, it is an ordered tree in
which every leaf occurs at the same level and every non-leaf node has 2, 3 or 4 children.
There is an intimate connection (actually, a simple many-to-one mapping) between red–black
and 2-3-4 trees that allows one to transform an algorithm for generating 2-3-4 trees into an
algorithm for generating all red–black trees. This connection will be explained in Section
3.3 after the presentation of an algorithm for generating all 2-3-4 trees.

3.1.1. Generating 2-3-4 trees

Let B(n) denote the set of all 2-3-4 trees withn leaves. In order to generate the setB(n)
recursively, it is convenient to generalize the set by adding another parameter. LetB(s, d)
be the set of subtrees of 2-3-4 trees such that all leaves are at one of two adjacent levels,
and where all leaves at the last level (of which there ares) occur before any at the

Figure 3. A typical red–black tree.

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

156 T. BALL ET AL.

penultimate level (of which there ared), in a preorder traversal. All non-leaf nodes must
have 2, 3 or 4 children. The last internal node in a level-order traversal will be called the
critical node. In Figure 4, the critical node is shaded.

Thus B(n,0) is the same as the setB(n). The numbersB(s,d) = uB(s,d)u satisfy recurrence
relation (1) below. This relation, for B-trees, first appeared in a work by Kelsen [25].

B(s,d) =









1 if s = 1

B(d + 1,0) if s = 2,3

B(d + 1,0) + B(2,d + 1) if s = 4

B(2,d + 1) + B(3,d + 1) if s = 5

B(s − 2,d + 1) + B(s − 3,d + 1)

+ B(s − 4,d + 1) if s $ 6

(1)

Each case of this recurrence relation is fairly easy to understand by considering the
underlying trees. Clearly, ifs = 1, then there is only one tree, namely the tree with one
node. Fors = 4, note thatB(4, d) = B(d 1 1,0)1 B(2, d 1 1) because the critical node must
either have four children (and removing those children yields a tree inB(d 1 1,0)) or have
two children (and removing those children yields a tree inB(2,d 1 1)). Similarly, if s= 2
or s= 3, then the children of the critical node must be all nodes at the lowest level; in
these casesB(s,d) = B(d 1 1,0). In the general case ofs $ 6, simply classify the trees
according to the numberi = 2, 3, 4 of children of the critical node; there areB(s2i, d11)
trees in which the critical node hasi children. For s = 5 the critical node cannot have 4
children. This discussion proves the recurrence relation (1).

A new encoding scheme for 2-3-4 trees is now introduced. Each 2-3-4 tree, and more
generally, the trees ofB(s,d), can be encoded by recording, in a reverse level-order traversal,
the number of children of each node, ignoring the leaves. Areverse level-order traversalis
a traversal that is done from greatest to smallest depth and right-to-left at each depth. This
sequence of numbers, one for each internal node, is referred to as thetree sequenceof the
tree. For example, the two tree sequences forn = 5 are 232 and 322; forn = 6 the sequences
are 242, 332, 422 and 2223. Figure 4 shows a typical tree inB(6,3) and its corresponding
tree sequence. Given a tree sequence, the originating tree can easily be constructed by
starting at the root of the tree, processing the sequence from right-to-left.

Figure 4. A typical tree inB(6,3); its tree sequence is 24322.

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

AUTOMATED CLASS TESTING 157

The reasoning used to justify the recurrence relation forB(s,d) can be used to derive a
simple recursive program for generating tree sequences. The C program of Figure 5 will
output all 2-3-4 tree sequences; note how it closely follows the structure of equation (1). It
is called ttf for two, three, four. The initial call isttf (n, 0, 0); the arraya need not be
initialized. The procedurePrintit(p) processes the array, which now holds the tree
sequence in positionsa[0 . .p −1] .

3.2. Analysing the efficiency of the algorithm

The amount of computation used to generateB(n,0) is proportional to the number of recursive
calls to ttf , since only a constant amount of computation is done for any given recursive
call and every recursive call eventually leads to the generation of at least one tree sequence.
Of interest is the ratio of the number of nodes in the computation tree (i.e. the number of
recursive calls) to the number of leaves (i.e. the number of 2-3-4 trees). This ratio will be
small as long as there are not many nodes with only one child.

The only time a node in the computation tree has a single child is ifs= 2 or s = 3. That
single child has only one child ifd 1 1 is 2 or 3; but thens= 1. From these observations
it can be argued that the total number of nodes in the computation tree is at most 4·uB(n)u.
Thus the total amount of computation used by the algorithm isO(uB(n)u); i.e. a constant
amount of computation is used to generate each tree sequence, in an amortized sense. Up
to constant factors, no algorithm for generating tree sequences can be faster. Note, however,
that the number of sequences grows exponentially, so test generation is limited to relatively
small values ofn (i.e. the enumeration is inherently inefficient, but is being done optimally).

3.3. Generating all red–black trees

To every red–black tree there naturally corresponds a unique 2-3-4 tree. This natural
correspondence may be explained by three simple recursive transformation rules as shown
in Figure 6. Each triangle represents a subtree and each circle is a node; the subtrees in the
red–black tree are assumed to have black roots. Note that each of the four cases for the
colours of the two children of the root of a black-rooted red–black tree are represented on
the right-hand side of Figure 6. These rules indicate precisely how many red–black trees
correspond to each 2-3-4 tree sequence. The number of black-rooted red–black trees corre-
sponding toa[0 . .p−1] is 2m where m is the number of 3’s ina. In addition, the root of a
black-rooted red–black tree can be made red as long as its two children are black; i.e. if
a[p − 1] = 2. For example, the tree sequences forn = 6 are 242, 332, 422 and 2223, and

Figure 5. Recursive algorithm for generating all 2-3-4 tree sequences.

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

158 T. BALL ET AL.

Figure 6. The 2-3-4 tree⇔ red–black tree conversion rules.

give rise to 1+ 4 + 1 + 2 = 8 black-rooted red–black trees, and 2+ 8 + 2 + 2 = 14 red–black
trees in total.

An algorithm to generate red–black trees is displayed in Figure 7. The overall structure
of the algorithm is the same as that ofttf in Figure 5. The main difference is that, instead
of storing numbers in an array to enumerate the tree, this algorithm creates the subtrees
given in Figure 6 as data structures and links them together to form an entire tree.

Figure 7. An algorithm to generate all red–black trees.

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

AUTOMATED CLASS TESTING 159

The main body of the algorithm is in procedureRB. It is identical with ttf except for
the following points.

(1) Each occurrence ofa[p] = x; ttf(a,b,c); is replaced with a call toR(x, p= =d, a,
b, c, cur); .

(2) Each occurrence ofa[p] = 3 is replaced by two calls, one with 3 and one with 5.
These handle the two possibilities that occur when transforming a node with 3 children
(3 is for the case with thered child on the left and 5 is for the red child on the right).

(3) When a red–black tree is printed, a check is made to see if both children of the root
are black. If this is the case then a second red–black tree is printed with the root
colour changed tored.

The initial call is RB(n − 1,0,0,NULL) to generate all red–black trees withn internal
nodes. The procedureR does the actual manipulation of the red–black tree.

(1) It creates the type subtree corresponding to the number of children of the 2-3-4 tree
(see the transformation rules in Figure 6).

(2) It links in the children, either previous subtrees or leaves as appropriate, using the
proceduresAddInternal and AddLeaf .

(3) It recursively invokesRB with the new parameters.
(4) Finally, it resets the tree structure before returning.

As each subtree is created it is pushed onto a stack. It is popped back off once the
subtree is no longer needed (after the recursion returns). The size of this stack corresponds
to the index into the array (the variablep) in Figure 5.

The pointercur indicates the lowest element of the stack that does not currently have a
parent. When a new subtree is created and it needs children (non-leaves), it uses the subtrees
pointed to bycur (without removing them) and then updatescur to the next available
subtree. This imitates the top-to-bottom, level-by-level, from right-to-left behaviour of the
B(s,d) tree algorithm. The parameterp is used to determine if children are needed. If, when
a new node is created,p = = d, then the subtree must be at the bottom of the tree so its
children must all be leaves. Otherwise, the subtree must take its children from those at the
cur pointer. This is whyp = = d is passed as an argument to theR procedure.

The only other consideration is that a black-rooted red–black tree with two black children
can be converted into another valid red–black tree by making the root red.

3.3.1. Analysing the red–black tree generating algorithm

The analysis of the tree generation algorithm closely follows the reasoning used to analyse
ttf . The only additional consideration is the overhead in generating the tree structures and
not just the tree sequences. The only additional observation to make is that each of the
additional procedures,Push , Pop, AddInternal and AddLeaf can be implemented so
that they take constant time. Thus the red–black tree generation algorithm produces each
tree in constant time, in an amortized sense.

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

160 T. BALL ET AL.

3.4. The preorder representation of a red–black tree

Binary trees are often represented by doing a preorder traversal of the tree, recording a 1
for each internal node, and a 0 for each leaf, omitting the final leaf. Red–black trees are a
particular type of binary tree, with internal nodes labelled either red or black. A natural
alternative to the string representation used previously is to use a preorder labelling, recording
a 0 for each leaf, a 1 for each black internal node, and a 2 for each red internal node. See
Figure 8 for an example. This representation is useful for storing and restoring the trees, but
is not so useful for generating the trees.

4. TEST DRIVERS

This section presents three test drivers: two of black-box type and one white-box type. In
all cases, the class-under-test (CUT) is theIntSet container class (see Figure 2).

4.1. IntSet : test case selection

In testing IntSet , the element values themselves are relatively unimportant while the
insertion order is significant. To keep driver development costs low, it is important that it
is easy to generate the valuesand to check that the results are correct. Further, for a given
CUT state, insertions should be performed before and after every value in the state. All of
these requirements are met with states that are instances of the following simple pattern:

{2,4,. . ., 2n} for n $ 0

There are three drivers, differing in the states that are selected for generation. The ordered
black-box (OBB) driver simply adds the set elements in increasing order. The random black-

Figure 8. The red–black tree with preorder labelling 110021200010.

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

AUTOMATED CLASS TESTING 161

box (RBB) driver generates a number of states for each set size by adding the elements in
quasi-random order, usinglinear congruential sequences[28]. Given the sequence length
N $ 0 and the incrementD P [1 . . N − 1]:

lcs(N,D) = k0,D modN,2D modN,. . .,(N − 1)D modNl

If N and D are relatively prime, then lcs(N,D) is guaranteed to be a permutation of
0,1,. . .,N − 1. For example, lcs(5,2)= k0,2,4,1,3l. One special case is worth noting:

lcs(N,1) = k0,1,. . .,N − 1l

Unlike the black-box drivers, the white-box (WB) driver is closely tied to the underlying
data structure. For a set withn values, it uses the algorithm presented in the previous section
to generate every red–black tree withn nodes.

4.2. IntSet : test drivers

Figure 9 contains pseudocode for the three drivers. Following the strategy in Figure 1 each
driver contains a function (OBB, RBB or WB) to generate a sequence of CUT states and a
function (checkState) to check that the CUT behaves properly in that state. The call
OBB(n) runs n 1 1 tests, one for eachi P [0. .n]. For a given i value, an emptyIntSet
object is created, loaded with 2,4,. . .,2i with a trivial for-loop, and passed tocheckState .
The RBB driver is similar except, for eachi P [0. .n], a linear congruential sequence is
generated for eachd P [1. .i − 1], which is relatively prime withi.

The WB function is based on the tree generation algorithm of Section 3. While that
algorithm generates all red–black trees, theIntSet implementations tested here produce
only trees with black roots [3]. Thus, theWB(n) function ignores trees with red roots. The
call WB(n) runs one test for eacht P RB(n) , the set of all black-rooted red–black trees
with n nodes. For each treet, an empty IntSet object is created, loaded witht using
setTree , and passed tocheckState . Ideally, setTree would be implemented by a
sequence ofadd calls, e.g. loading the node values in breadth-first order. What is needed
here is an algorithm that takes a red–black treet as input and produces a sequence of add
calls that would generatet in the IntSet implementation. It turns out that this problem is
a difficult one and the known solutions are both complex and sensitive to the particular
node insertion algorithm used [29]. The problem is hard even if deletions are permitted.
With the red–black tree algorithms tested in this paper and used in the Standard Template
Library, many trees cannot be created using add calls alone, and it is not obvious how to
generateadd/remove sequences that generate a given tree. Consequently, thesetTree
member function was added toIntSet strictly for testing purposes. ThesetTree
implementation builds the tree directly, bypassing the tree-balancing algorithms inadd
or remove .

The implementation ofcheckState is divided into three parts.

Step1. Check the contents ofs with the isMember get call. The contents ofs are verified
by calling isMember(i) for every i P [1 . . 2n + 1].

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

162 T. BALL ET AL.

Figure 9. Pseudocode for black-box and white-box drivers.

Step2. Perturb s by adding a single elementwith the add set call. For every
i P [1 . . 2n + 1], a copy of s is made ins0 and i is added to that copy. Ifi is
even then theadd call is ignored. In either case, the contents ofs0 are checked,
as in step 1.

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

AUTOMATED CLASS TESTING 163

Step3. Perturb s by removing a single element with theremove set call. For every
i P [1 . . 2n 1 1], a copy ofs is made ins0 and i is removed from that copy. Ifi
is odd then theremove call is ignored. In either case, the contents ofs0 are
checked, as in step 1.

For simplicity, code that purposely generates an exception, such as adding the same
element twice, has been omitted. It would be easy to modifycheckState to perform
exception tests using, for example, the methods described by Hoffman and Strooper [19].

5. EXPERIMENTAL EVALUATION

The drivers were applied to 12IntSet implementations based on red–black trees, developed
by students in a fourth-year software engineering course. Three of the 12 implementations
contained faults. Both the white-box driver (WB) and the black-box drivers (OBB and RBB)
caused all three faulty implementations to fail, causing addressing exceptions in each case.
Careful study of the faulty programs showed that all three faults were ‘transcription errors’:
errors in converting the pseudocode in the text [3] to C11. No coverage analysis was
performed on the faulty implementations because their tests did not run to completion. The
coverage characteristics of one of the nine fault-free implementations is reported later in this
section. Statement and path coverage of the remaining eight fault-free implementations
showed no significant differences.

5.1. Driver coverage results

The PP path profiling tool of Ammons, Ball and Larus [30,31] was used to analyse the
basic block coverage and path coverage of the fault-free red–black tree implementation under
the three drivers. PP instruments Unix executable files for Sparc/Solaris (i.e.a.out files).
PP identifies the basic blocks and control transitions in an executable, creates a control flow
graph for each procedure, and inserts small blocks of machine code to record which paths
are executed. PP profiles intra-procedural acyclic control flow paths that start either at
procedure entry or a loop backedge and end at procedure exit or a loop backedge. From
this path coverage information, basic block coverage information can be derived.

Figure 10(a) shows cumulative basic block coverage for all three drivers, while Figure 10(b)
shows cumulative path coverage for the three drivers. Thex-axis represents the size of the
integer set used in the test. They-axis represents block/path coverage over all blocks and
paths, including unreachable blocks and infeasible paths. For the given red–black tree
implementation, the PP tool identified a total of 309 basic blocks and 187 paths.

The graph of Figure 10(a) shows that all three drivers achieve very high block coverage
of the red–black tree implementation. In fact, the RBB and WB achieve 100 per cent of all
reachable blocks. OBB achieves lower coverage than RBB, as expected. WB achieves
coverage faster than OBB and RBB as it examines more trees per test. OBB was run to a
set size of 200 and block coverage did not increase over that shown in this graph.

The path coverage graph of Figure 10(b) shows that path coverage distinguishes the three
drivers better than block coverage does. Table I breaks down the coverage for RBB and WB

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

164 T. BALL ET AL.

Figure 10. Cumulative block and path coverage for the red–black tree implementation under three
different test drivers. Thex-axis represents the size of the integer set used in the test.

by method. The set of paths covered by WB but not RBB stems primarily from one method:
RBDeleteFixup . RBB was run out to a set size of 200; no new paths were encountered
after set size 19. WB was run up to a set size of 20, after which further testing became
prohibitively expensive (there are 248 312 red–black trees of size 20).

The RBDeleteFixup method was analysed to understand why white-box testing was so

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

AUTOMATED CLASS TESTING 165

Table I. Summary of path coverage by method for the RBB and WB. ‘Total paths’ is the total number
of paths in the method, as determined by the PP tool. ‘RBB’ is the number of paths covered by the

random black-box driver and ‘WB’ is the number of paths covered by the white-box driver.

Method Total paths RBB WB

isMember 1 1 1
removeAll 1 1 1
size 1 1 1
IntSet0 (constructor) 2 1 1
IntSet0 (destructor) 2 1 1
postorderTreeWalk 2 2 2
remove 2 2 2
add 3 2 2
treeMinimum 4 4 4
leftRotate 6 6 6
rightRotate 6 6 6
treeSuccessor 7 1 1
treeSearch 8 8 8
treeInsert 10 7 7
RBInsert 16 16 16

RBDeleteFixup 44 24 36
RBDelete 72 11 12

much more effective in covering its paths than black-box testing. WB covers 36 of 44
possible paths. The remaining paths were examined and all were found to be infeasible.
RBB covered only 24 of the 44 paths. Perhaps not surprisingly, this method is the largest
of all the methods and has the most complex control flow. It restores the red–black tree
properties after the deletion of a node by a fairly complex traversal and restructuring of the
tree. By testing this method against all red–black trees of sizeN, WB is able to achieve
much more thorough coverage than the RBB. However, as shown in Table I, the two
drivers have identical coverage for all other procedures other thanRBDeleteFixup
and RBDelete .

Path coverage is less than block coverage because of infeasible paths, contributed primarily
by one method:RBDelete . This method has 72 paths, but only 12 feasible paths. This
accounts for 60 infeasible paths out of the total of 187 potential paths in the implementation.
Simple restructuring of this method to eliminate the infeasible paths resulted in a method
with 15 paths and 12 feasible paths. The implementation achieves better performance with
the restructured routine, as some redundant computations were eliminated.

Of course, path coverage results are hard to use in practice because of infeasible paths.
However, several ideas are suggested by the case study.

(1) While the number of infeasible paths is unknown, the rate of increase in the number
of paths covered over a series of tests can be used to evaluate whether a particular
testing strategy is helpful in covering paths not previously executed. As the two graphs
in Figure 10 show, new paths are being covered when basic block coverage has
levelled off.

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

166 T. BALL ET AL.

(2) The more thoroughly a test suite exercises a program, the higher the probability that
unexecuted paths are infeasible paths. In other words, a thorough test driver provides
an approximation to the set of feasible paths in a program. In the example, all the
unexecuted paths examined for WB path coverage were infeasible paths.

(3) From the analysis of theRBDelete method it was found that the presence of many
infeasible paths may make code unnecessarily slow and hard to understand. In some
cases, restructuring the code to eliminate infeasible paths also improves both its
performance and the ability of programmers to understand and modify it. Other
researchers have reported similar relationships between infeasible paths, and perform-
ance and comprehensibility [32,33].

5.2. Cost of testing

This section presents timings of the three drivers, as shown in Figure 11. The drivers were
run on a Sparc-server E-3000. They-axis shows the amount of time (in seconds of elapsed
real time) to run each of the three (PP-instrumented) drivers for each set size up to 20.
These timings are not cumulative. Not surprisingly, for larger set sizes, the WB driver takes
appreciably longer than the black-box drivers, since the number of trees considered for each
set size grows exponentially with set size, while OBB considers 1 set for each set size and
RBB considers at mostN sets for each set size. The WB times are dominated by inserting
and deleting every element, for every possible tree. The time taken to generate all the trees
is insignificant. For example, it takes only six seconds to generate all red–black trees of

Figure 11. Timings of the three instrumented drivers, in seconds of real time, for each set size. The
timings are not cumulative. Also note that they-axis is on a logarithmic scale.

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

AUTOMATED CLASS TESTING 167

size 20, while it takes 2707 seconds (45 minutes) for WB to run on all red–black trees of
size 20.

Despite the longer running time of the WB driver compared to black-box, the times are
reasonable, given the higher level of path coverage achieved. It took about 1.5 hours to run
WB on all trees up to and including trees of size 20. The path coverage plateau atN = 19
suggests stopping there for white-box regression testing. None the less, if one plans to
employ white-box testing for a large number of container classes, such test times may be
unacceptably long, suggesting a randomized approach to WB testing.

5.3. Randomized white-box testing

This section explores how randomizing the selection of red–black trees can affect the
coverage and run-time results for the white-box driver. For this experiment, inputs consisted
of all red–black trees ranging in size up to 20 (there are 479 843 such trees). A randomizing
filter was applied to this input. The filter passes a tree through if a randomly generated
number between 0 and 1 is less than a certain threshold, and throws the tree away otherwise.
The WB driver was run using a sequence of ten threshold values, generated as follows: the
last value in the sequence is 0.25 per cent (1/4 of one per cent); theith value in the
sequence is half of the (i 1 1)th value. Given that there are 479 843 trees to choose from,
this means that approximately two trees will be picked for the first threshold value and
approximately 1200 trees will be picked for the last threshold value.

Figure 12 shows the cumulative coverage and (non-cumulative) timing results for the
randomized WB driver. In both graphs, thex-axis represents the actual number of trees
chosen by the filter for the given threshold value. The main point to note from these two
plots is that in 12 seconds, the randomized WB driver (RWB) was able to achieve coverage
very close to that of the WB driver. In fact, there are only four paths from the WB driver
not covered by the RWB driver. Furthermore, even with small threshold values, the path
coverage is quite good.

Using randomization, it is also possible to explore trees with much larger numbers of
nodes. This would require adapting the red–black tree generation algorithm from its currently
batch-oriented flavour to randomly generated trees of a given size in an on-line fashion.

6. CONCLUSIONS

This paper has presented a generic approach to testing container classes, based on state
generation. The approach has been demonstrated by developing: (1) a new and efficient
algorithm for red–black tree generation; and (2) test drivers for classes implemented with
red–black trees. Initial experiments indicate that the approach is effective, producing signifi-
cantly better path coverage than black-box tests, and fault detection as good as the black-
box tests on a sample of faulty implementations. The drivers are also practical in terms of
run time and development cost. Test run times were reasonable because the tree generation
algorithm and theIntSet implementation are efficient. Each driver consists of roughly 100
lines of straightforward C11; only the tree generation algorithm is complex.

The approach provides a way for testing practitioners to harvest the prodigious output of

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

168 T. BALL ET AL.

Figure 12. Coverage and timing for the randomized black-box driver.

the theory of algorithms community. While the generation algorithms are complex there are
many already available. Further, the tester needs to understand the algorithm output but can
ignore its implementation. Since there are not very many data structures in wide use
commercially, a modest collection of generation algorithms will be sufficient to support a
lot of class testing.

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

AUTOMATED CLASS TESTING 169

ACKNOWLEDGEMENTS

DH was supported in part by NSERC and Bell Laboratories. FR was supported in part by NSERC.
Thanks to Nigel Daley for prototyping the white-box drivers.

REFERENCES

1 McDonald J, Hoffman D, Strooper P. Programmatic testing of the Standard Template Library container classes.
In Proceedings of IEEE International Conference on Automated Software Engineering1998; 147–156.

2 JavaSoft.The bug parade. http://java.sun.com/jdc [1999].
3 Cormen T, Leiserson C, Rivest R.Introduction to Algorithms. MIT Press: Cambridge, MA, 1990
4 Clarke L. A system to generate test data and symbolically execute programs.IEEE Transactions on Software

Engineering1976; 2(3): 215–222.
5 Bertolino A, Marré M. Automatic generation of path covers based on the control flow analysis of computer

programs.IEEE Transactions on Software Engineering1994; 20(12): 885–899.
6 Gotlieb A, Botella B, Rueher M. Automatic test data generation using constraint solving techniques. In

Proceedings of ACM SIGSOFT International Symposium on Software Testing and Analysis1998; 53–62.
7 Parasoft.Automatic white-box testing for the Java developer. http://www.parasoft.com/jtest/jtestwp.htm [1998].
8 Rothermel G, Harrold M. A safe, efficient regression test selection technique.ACM Transactions on Software

Engineering and Methodology1997; 6(2): 173–210.
9 Bougé L, Choquet N, Fribourg L, Gaudel M. Test sets generation from algebraic specifications using logic

programming.Journal of Systems and Software1986; 6(4): 343–360.
10 Gannon J, McMullin P, Hamlet R. Data-abstraction, implementation, specification and testing.ACM Transactions

on Programming Languages and Systems1981; 3(3): 211–223.
11 Hughes M, Stotts D. Daistish: systematic algebraic testing for OO programs in the presence of side-effects. In

Proceedings of ACM SIGSOFT International Symposium on Software Testing and Analysis1996; 53–61.
12 Chen HY, Tse TH, Chan FT, Chen TY. In black and white: an integrated approach to class-level testing of

object-oriented programs.ACM Transactions on Software Engineering and Methodology1998; 7(3): 250–295.
13 Dillon L, Ramakrishna Y. Generating oracles from your favorite temporal logic specifications. InProceedings

of the 4th ACM SIGSOFT Symposium on Foundations of Software Engineering1996; 106–117.
14 Stocks P, Carrington D. A framework for specification-based testing.IEEE Transactions on Software Engineering

1996; 22(11): 777–793.
15 Panzl D. A language for specifying software tests. InProceedings of the AFIPS National Computer Conference.

AFIPS, 1978; 609–619.
16 Hoffman D. A CASE study in module testing. InProceedings of the Conference on Software Maintenance.

IEEE Computer Society, 1989; 100–105.
17 Hoffman D, Strooper P. Automated module testing in Prolog.IEEE Transactions on Software Engineering1991;

17(9): 933–942.
18 Murphy G, Townsend P, Wong P. Experiences with cluster and class testing.Communications of the ACM

1994; 37(9): 39–47.
19 Hoffman DM, Strooper PA. Classbench: A framework for automated class testing.Software-Practice and

Experience1997; 27(5): 573–597.
20 Ostrand T, Balcer M. The category-partition method for specifying and generating functional tests.Communi-

cations of the ACM1988; 31(6): 676–686.
21 Software Research Inc.The TDGEN test data generator. http://www.soft.com/products/index.html [1998].
22 Cobb R, Mills H. Engineering software under statistical quality control.IEEE Software1990; 7(6): 44–54.
23 Musa J, Iannino A, Okumoto K.Software Reliability Measurement, Prediction, and Application. McGraw-Hill:

New York, 1987.
24 Lucas J, van Baronaigien D, Ruskey F. On rotations and the generation of binary trees.Journal of Algorithms

1993; 15(3): 343–366.
25 Kelsen P. Ranking and unranking trees using regular reductions. InProceedings of the Symposium on Theoretical

Aspects of Computer Science, LNCS #1046. 1996; 581–592.
26 Nijenhuis A, Wilf H. Combinatorial Algorithms(2nd edn). Academic Press: New York, 1978.
27 Doong R, Frankl P. The ASTOOT approach to testing object-oriented programs.ACM Transactions on Software

Engineering and Methodology1994; 3(2): 101–130.
28 Knuth D. The Art of Computer Programming, Vol. II. Addison-Wesley: Reading, MA, 1969.
29 Cameron H, Wood D. Insertion reachability, skinny skeletons, and path length in red–black trees.Information

Sciences1994; 77(1–2): 141–152.

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

170 T. BALL ET AL.

30 Ball T, Larus JR. Efficient path profiling. InProceedings of MICRO 96. 1996; 46–57.
31 Ammons G, Ball T, Larus J. Exploiting hardware performance counters with flow and context sensitive profiling.

ACM SIGPLAN Notices1997; 32(5): 85–96. Proceedings of the SIGPLAN ’97 Conference on Programming
Language Design and Implementation.

32 Hedley D, Hennell M. The causes and effects of infeasible paths in computer programs. InProceedings of the
International Conference on Software Engineering. IEEE Computer Society, 1985; 259–266.

33 Woodward M, Hedley D, Hennell M. Experience with path analysis and testing of programs.IEEE Transactions
on Software Engineering1980; 6(3): 278–286.

Copyright  2000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.2000;10: 149–170

