
Transformations amongst the Walsh, Haar, Arithmetic and Reed-Muller
Spectral Domains

M. A. Thornton D. M. Miller R. Drechsler

Electrical and Computer Engineering Computer Science Siemens AG
Mississippi State University University of Victoria Munich

Starkville, MS Victoria, BC Germany
USA CANADA address

mitch@ece.msu.edu mmiller@csr.uvic.ca drechsle@informatik.uni-freiburg.de

Abstract

Direct transformation amongst the Walsh, Haar, Arith-
metic and Reed-Muller spectral domains is considered. Ma-
trix based techniques are developed and it is shown that
these can be implemented as fast in-place transforms. It is
also shown that these transforms can be implemented di-
rectly on decision diagram representations.

1 Introduction

Transformation between the Boolean and various spec-
tral domains has been extensively studied [1, 3, 13, 14, 15].
In this paper, we review the fundamental structures and
properties of spectral transforms and the resulting spectra of
Boolean functions. Matrix based computation of the spec-
tra is considered as are fast transform techniques derived
from the matrix structures. The contribution of this paper
is to show that fast transform techniques can be developed
for direct transformation amongst certain spectral domains,
i.e. transforms from one spectral domain to another that do
not pass through the Boolean domain. These fast transform
techniques can be directly implemented on decision diagram
representations.

The paper is organized as follows. Section 2 provides the
necessary mathematical background for this paper. Section
3 introduces the spectral domains considered. Fast trans-
form techniques are discussed in Section 4. Direct trans-
forms amongst the spectral domains are discussed in Sec-
tion 5. Section 6 considers the use of decision diagram tech-
niques to implement the fast transforms. The paper con-
cludes with some closing remarks and suggestions for fur-
ther research.

2 Background

An n-input completely-specified Boolean function f can
be represented by Y = fm0;m1;m2 : : :m2n�1gt a column
vector with 2

n entries each giving the functional value for
the correspondingminterm. Y is often called the truth vector
for f .

f represented by Y can be transformed from the Boolean
to a spectral domain as follows:

R = TnY (1)

where Tn is a 2
n by 2

n transform matrix the precise spec-
ification of which defines the spectral domain in question.
In many cases, the matrix has a simple recursive structure
which can be used to significant computational advantage as
will be shown.

We restrict our interest to invertible transforms, hence:

Y = (Tn
)
�1R

The consequence is that the transforms between the Boolean
and spectral domains fully preserve information, but, as is
well known, the spectral domains make certain properties
easier to consider than in the Boolean domain, and different
spectral domains illuminate different functional properties.

Often the transform matrix can be expressed as a se-
quence of Kronecker products of a single base matrix. We
here provide a brief review of the Kronecker product. More
detail can be found in [10].

Given a matrix A of order (m � n) with the element in
the ith row and j

th column denoted aij and a matrix B of
order (r � s), the Kronecker product A
 B is given by

A
 B =

2
6664

a11B a12B � � � a1nB
a21B a22B � � � a2nB

...
...

...
am1B am2B � � � amnB

3
7775

The product matrix has order (mr � ns). Note that unlike
the normal matrix product, the Kronecker product is defined
for any matrix orders.

For matrices A, B, C and D and a scalar �, the following
properties hold

(�A)
 B = �(A
 B)

A
 (�B) = �(A
 B)

(A + B)
C = A
C + B
C
A
 (B +C) = A
 B + A
C
A
 (B
C) = (A
 B)
C

(A
 B)
t

= At
 Bt

(A
 B)(C
D) = AC
 BD (2)

(A
 B)
�1

= A�1
 B�1

Equation 2 is termed the mixed product rule and is only
valid when the matrices are of appropriate dimension for the
normal matrix products.

Finally, two observations from the above properties are
particularly relevant to our work. The Kronecker product
of two symmetric matrices is itself a symmetric matrix, and
since the Kronecker product is an associative operation, the
order of application of a sequence of Kronecker products
does not matter.

Although not stated in [10], it is clear from the develop-
ment there that the Kronecker product properties we make
use of in this Chapter hold over GF (2), a fact that will be
useful below in the consideration of the Reed-Muller trans-
form.

The following theorem concerning inverses of matrices
expressed as Kronecker products of a base matrix is very
useful.

Theorem 2.1 Given a square invertible matrix A,

"
nO
i=1

A

#
�1

=

nO
i=1

A�1

Proof: This follows immediately by the iterative applica-
tion of the identity (A
 B)

�1
= A�1
 B�1 and the asso-

ciativity of the Kronecker product. 2

3 Spectral Transforms

In this section we present four particular spectral trans-
forms that have been extensively studied in the literature:
the Walsh, the Reed-Muller, the Arithmetic, and the Haar
transforms.

3.1 Walsh Transform

Perhaps the most well known and most widely studied
spectral transforms are based on a set of orthogonal func-
tions defined by J. L. Walsh in 1923 [24] which are an ex-
tension of a set of functions defined by H. Rademacher [19]
a year earlier. The transform itself is a form of Hadamard
matrix [23].

The Walsh transform matrix Wn in Hadamard order can
be defined as

W0
= [1] Wn

=

�
Wn�1 Wn�1

Wn�1 �Wn�1

�

An equivalent definition using the Kronecker product is par-
ticularly useful here

W1
=

�
1 1

1 �1

�

and
Wn

= W1
 Wn�1

Since the Kronecker product is associative, this may be writ-
ten as

Wn
=

nO
i=1

W1

The rows of Wnare the set of 2n n-variable Walsh functions
of which the n-variable Rademacher functions are a subset.
In addition to the Hadamard (Walsh-Hadamard), the Walsh
(Walsh-Kaczmarz), the Paley-Walsh, and the Rademacher-
Walsh orderings have been studied [4][14] . The Hadamard
ordering has seen most use since the simple recursive struc-
ture of the transform matrix allows for ‘fast transform’
methods [9] [21]. The Hadamard, Walsh and Walsh-Paley
orderings share the very useful property that the transform
matrix is its own inverse up to a scaling factor of 1

2n
as will

be shown below for the Hadamard case. The practical im-
portance of this is that the same computational procedure
can be used for transforming between the function and spec-
tral domains with the simple adjustment of scaling.

The Walsh spectrum R of f is given by

R = WnY

where the matrix multiplication is carried out over the inte-
gers, i.e. logic 0(1) is treated as the integer 0(1). We term
this R-encoding.

An alternate formulation represents the function by the
vector Z in which logic 0 is coded as +1 and logic 1 is coded
as�1, which we term S-encoding. In this case the spectrum
is given by

S = WnZ

Since Z = 1� 2Y, it can be shown that

s0 = 2
n � 2r0; s� = �2r�; 8 � � f1; 2 : : :ng

so the information content of the R and the S spectral coef-
ficients is the same.

Theorem 3.1 (Wn
)
�1

=
1

2n
Wn.

Proof: The proof follows from Theorem 2.1, the fact
(W1

)
�1

=
1

2
W1 and the fact that scalar multipliers can be

factored out of a Kronecker product. 2

3.2 Reed-Muller Transform

The Reed-Muller transfrom is motivated by the seminal
work in 1954 of I.S. Reed [20] and R.E. Muller [18] which
led to considerable interest in the Reed-Muller (AND-XOR)
expansion of Boolean functions. The transform matrix Mn

is defined by

M0
= [1] Mn

=

�
Mn�1

0

Mn�1 Mn�1

�
(3)

and the spectrum R is given by

R = MnY (4)

In this case, the matrix multiplication is over GF (2) i.e. in-
teger addition is replaced with summation modulo-2. Mn

can be expressed using the Kronecker product as

M1
=

�
1 0

1 1

�

Mn
=

nO
i=1

M1 (5)

Theorem 3.2 (Mn
)
�1

= Mn over GF (2).

Proof: The proof follows from Theorem 2.1 and the fact
(M1

)
�1

= M1 over GF (2). 2

From this theorem we have:

Y = MnR (6)

The above shows that Y is a linear combination (over
GF (2)) of the columns of Mn for which the relevant co-
efficient in R is 1. Each column of Mn represents a func-
tion which is the logical AND of a subset of x1; x2; : : : ; xn.
The leftmost column is the constant function 1 which corre-
sponds to the AND of no variables. Hence the Reed-Muller
spectrum identifies a representation of a Boolean function as
a sum over GF (2) of a collection of products of variables.
To be precise,

Y =

2
n

�1X
i=0

riM
n
i (7)

where Mn
i is the ith column of Mn.

3.3 Arithmetic Transform

The arithmetic transform [12], which is also known as
the probability transform [22] and the inverse integer Reed-
Muller transform [8] was initially introduced by S.K. Ku-
mar and M.A. Breuer in 1981 [16] in work on probabilistic
aspects of Boolean functions. The transform matrix has a
recursive structure analogous to that of the Walsh and Reed-
Muller transforms and is given by

A0
= [1] An

=

�
An�1

0

�An�1 An�1

�
(8)

or alternatively

A1
=

�
1 0

�1 1

�

An
=

nO
i=1

A1 (9)

As before, we define the spectrum as

R = AnY (10)

Theorem 3.3

(An
)
�1

=

nO
i=1

�
1 0

1 1

�

Proof: The proof follows from Theorem 2.1 and the fact

(A1
)
�1

=

�
1 0

1 1

�
. 2

Note that while (A1
)
�1 = M1, their use is quite differ-

ent since the arithmetic spectrum is computed over the in-
tegers whereas the Reed-Muller spectrum is computed over
GF (2). It is for this reason the arithmetic transform was
termed the inverse integer Reed-Muller transform in [8].

3.4 Haar Transform

The orthogonal Haar functions presented by A. Haar in
1910 [11] form a set of 2n continuous orthogonal functions
over the interval [0,1]. They can be defined as follows where
k is over the continuous interval 0 to 1:

H
0

0
(k) = +1:0

H
q

i (k) = (

p
2)
i�1

(+1:0); for
q

2i�1
� k <

q +
1

2

2i�1

= (

p
2)
i�1

(�1:0); for
q +

1

2

2i�1
� k <

q + 1

2i�1

= 0; at all other points (11)

where i = 1; 2; : : : ; n and q = 0; 1; : : :; 2
i�1 � 1.

Discrete sampling of the set of Haar functions gives a
2
n � 2

n orthogonal matrix Tn. For n = 3,

T3
=

2
6666666664

1 1 1 1 1 1 1 1

1 1 1 1 �1 �1 �1 �1p
2

p
2 �

p
2 �

p
2 0 0 0 0

0 0 0 0

p
2

p
2 �

p
2 �

p
2

2 �2 0 0 0 0 0 0

0 0 2 �2 0 0 0 0

0 0 0 0 2 �2 0 0

0 0 0 0 0 0 2 �2

3
7777777775

Tnis a complete, orthogonal matrix with �
2
n

�1

k=0
tiktjk = 2

n

if i 6= j and 0 otherwise. The following result follows di-
rectly.

Theorem 3.4 [Tn
]
�1

=
1

2n
[Tn

]
t.

Note that Tn is not symmetric so the transpose is needed for
the inverse.

A computationally more practical modified Haar trans-
form Kn is derived from Tn by normalizing the nonzero en-
tries of Tn to take the values +1 and -1 yielding for n = 3

for example:

K3
=

2
664

1 1 1 1 1 1 1 1

1 1 1 1 �1 �1 �1 �1

1 1 �1 �1 0 0 0 0

0 0 0 0 1 1 �1 �1

1 �1 0 0 0 0 0 0

0 0 1 �1 0 0 0 0

0 0 0 0 1 �1 0 0

0 0 0 0 0 0 1 �1

3
775

Theorem 3.5 The modifiednormalized Haar transform can
be expressed as

K0
= [1] Kn

=

�
Kn�1
 � 1 1

�
In�1
 � 1 �1

� � (12)

Proof: For the modified normalized Haar transform, Equa-
tion 11 becomes:

H
0

0
(k) = +1

H
q

i (k) = +1; for
q

2i�1
� k <

q +
1

2

2i�1

= �1; for
q +

1

2

2i�1
� k <

q + 1

2i�1

= 0; at all other points (13)

where i = 1; 2; : : : ; n and q = 0; 1; : : : ; 2
i�1 � 1.

For i = n, 2
n�1 Haar functions are defined, each

sampled at 2
n points which are q and q +

1

2
for q =

0; 1; : : : ; 2
n�1 � 1. The first of these functions, H0

n(k) is
a 1, followed by a -1, followed by 2

n � 2 0’s. The second,
H

1

n(k), is two 0’s, followed by a 1, followed by -1 followed
by 2

n � 4 0’s. The ongoing pattern should be apparent and
is illustrated above for the case of n = 3. These functions
in order are the bottom 2

n�1 rows of Kn. They can be ex-
pressed in matrix form as In�1
 [1 � 1].

For i = 1; 2; : : : ; n� 1, the Haar functions defined pre-
ceded byH0

0
(k) are precisely those that compose Kn�1 and

it is these functions that comprise the upper half of Kn. The
difference is that to correspond to the lower half of Kn, these
functions must be sampled twice as often. This corresponds
to duplicating the values across the function which can be
expressed in matrix form as Kn�1
 [1 1].

Concatenating the two matrix expressions yields Equa-
tion 12. 2

Theorem 3.4 does not hold for the normalized Haar trans-
form matrix since while the rows do maintain pairwise or-
thogonality the resultant values are not the same. The in-
verse of Knis given by the following theorem.

Theorem 3.6 (K0
)
�1

= [1]

(Kn
)
�1

=
1

2n

�
(Kn�1

)
�1

�
1

1

�
; In�1

�
2
n�1

�2
n�1

��

Proof: Let

Bn
=

�
(Bn�1

)

�

1

1

�
; In�1

�
2
n�1

�2
n�1

��

and consider KnBn. This yields

KnBn
=

�
Q00;Q01

Q10;Q11

�

where

Q00 =

�
Kn�1
 [1 1]

��
Bn�1

�
1

1

��

Q01 =
�
Kn�1
 [1 1]

��
In�1

�
2
n�1

�2
n�1

��

Q10 =

�
In�1
 [1 � 1]

��
Bn�1

�
1

1

��

Q11 =

�
In�1
 [1 � 1]

��
In�1

�
2
n�1

�2
n�1

��

Applying the mixed product rule (A
 B)(C
 D) =

AC
BD and then reducing, the above becomes

KnBn
=

�
2Kn�1Bn�1

0

0 2
nIn�1

�
(14)

We hypothesize that (Kn
)
�1

=
1

2n
Bn. From Equation

14 this is clearly true when n = 1. Induction on n as-
sumes Kn�1Bn�1

= [2
n�1In�1] substituted into Equation

14 yields KnBn
= [2

nIn]. Hence (Kn
)
�1

=
1

2n
Bn and the

theorem is proven. 2

For n = 3 for example, the inverse is

[K3
]
�1

=
1

23

2
666666664

1 1 2 0 4 0 0 0

1 1 2 0 �4 0 0 0

1 1 �2 0 0 4 0 0

1 1 �2 0 0 �4 0 0

1 �1 0 2 0 0 4 0

1 �1 0 2 0 0 �4 0

1 �1 0 �2 0 0 0 4

1 �1 0 �2 0 0 0 �4

3
777777775

As is apparent from the above example, (Kn
)
�1 is the trans-

pose of Knwith scaling factors applied to certain columns.
From the recursive structure of Equation 14, one can ver-
ify that the appropriate scaling factor is 2n�k where k is the
log

2
(p) and p is the number of non-zero entries in the col-

umn. It is clear from the definition of Knthat p is always a
power of 2 so k is always a positive integer.

4 Transform Procedures

The above spectra can be directly computed by appropri-
ate matrix multiplication,however the computationalcost of
this approach is generally prohibitive for functions of signif-
icant size. Fortunately, more efficient alternative techniques
exist. In this section, we present so-called fast transform
techniques.

4.1 Fast Walsh-Hadamard Transform

The recursive definition of the Hadamard-ordered Walsh
transform is the basis for a fast Hadamard transform (FHT)
method analogous to a fast Fourier transform (FFT) over
discrete data. Observe that

R =

�
Wn�1 Wn�1

Wn�1 �Wn�1

�
Y0

Y1

�

where Y0 and Y1 represents a partitioning of Y into two
equal sized subvectors. It follows that

R =

�
Wn�1Y0

+ Wn�1Y1

Wn�1Y0 � Wn�1Y1

�
(15)

=

�
Wn�1

(Y0
+ Y1

)

Wn�1
(Y0 � Y1

)

�
(16)

The above shows that the computation of thenth order trans-
form involves the application of (n� 1)

th order transforms
to two subvectors of Y followed by the addition and subtrac-
tion of the results. Alternatively, the transform can be com-
puted as the addition and subtraction of two subvectors of
Y followed by the application of two (n� 1)

th order trans-
forms to the resultant subvectors. A similar reduction can be
applied to the computation of the (n�1)

th order transforms.

Indeed the reduction can be iteratively applied down to the
trivial case of applying W0 transforms. The result is that
the objective of computing WnY is reduced to a sequence
of vector additions and subtractions.

At each iteration, there are twice as many additions and
subtractions as for the previous iteration involving subvec-
tors of half the size. The computational work at each iter-
ation is thus the same. In total, n iterations are involved
with each involving 2

n elements yielding time complexity
O(n2

n
). The operations can be applied in place on a sin-

gle vector so the space complexity is O(2
n
). This is in con-

trast to the matrix multiplication approach where the time
and space complexities are both O(2

2n
).

The computational sequence arising from the above is il-
lustrated in Figure 1 for the case of n = 3. For clarity, we
show the computation as creating new vectors but note again
that the computation can in fact be done in place. The inter-
pretation of the butterfly signal flowgraphs in Figure 1 is as
shown in Figure 2.

The FHT method represents a substantial improvement
over computing the spectrum by matrix multiplication but
it is still prohibitive for large functions due to its exponen-
tial complexity. A major importance of this approach is that
it forms the basis for very efficient decision diagram ap-
proaches.

1

1

1

1

1

-1

-1

0

-2

2

0

0

 2

0

 2

0

4

2

2

2

 0

0

-2

2

2

-2

-2

-2

2

2

6

-1

Figure 1. Example of Fast Transform Compu-
tation of Walsh Spectrum

4.2 Fast Reed-Muller Transform

A similar approach is possible for developing a fast Reed-
Muller transform since Mnhas a similar recursive structure
to that of Wn. The situation forn = 3 is illustrated in Figure
3 with the interpretation of signal flow subgraph is as shown
in Figure 4. The computations for a fast Reed-Muller trans-
form are of course over GF (2).

A

B

A+B

A-B

Figure 2. Interpretation of a “Butterfly” Signal
Flowgraph for the Walsh Transform

0

0

0

0

0

1

1

0

1

0

0

0

 1

1

 1

0

0

0

0

0

 1

1

1

0

0

0

1

1

1

1

1

1

Figure 3. Example of Fast Transform Compu-
tation of Reed-Muller Spectrum

4.3 Fast Arithmetic Transform

The situation for the arithmetic transform is analogous
to the Walsh and Reed-Muller cases and thus not explicitly
shown here.

4.4 Fast Haar Transform

The signal flowgraph for a fast normalized Haar trans-
form can be identified directly from the recursive definition
of Kn given in Theorem 12. The case for n = 3 is depicted
in Figure 5. The “butterfly” structures are as defined in the
Walsh case, Figure 2.

A

B

A

A+B (mod 2)

Figure 4. Interpretation of a Signal Flow Sub-
graph for the Reed-Muller Transform

0

0

0

0

0

1

1

1

1

-1

1

0

 1

0

 -1

2

-1

 1

01

3

-1

-1

1

0

-1

0

 -1

Figure 5. Example of Fast Transform Compu-
tation of Haar Spectrum

Figure 5 depicts the normalized Haar transform. For the
unnormalized transform defined by Equation 11 the struc-
ture is the same but appropriate multipliers must be applied
in the computations.

The inverse transform has the reverse structure and once
again appropriate multipliers must be applied, this time in
both the normalized and unnormallzed cases. Figure 6 de-
picts the situation for the inverse normalized transform us-
ing the same example as Figure 5. A value passing through
a phase without going through a “butterfly” is multiplied by
2. The result is scaled by 2

3.

0

0

0

0

0

8

8

4

4

-1

1

0

 4

0

 -1

3

1

8

-1

0

-4

4

0

 -4

4

-2

 2

0

-2

2

0

 -2

Figure 6. Example of Fast Transform Compu-
tation of Inverse Haar Transform

The Haar transform considered thus far and particularly
the fast transform illustrated in Figure 5 is in sequency or-
der. A drawback is that it can not be done in place since as is
apparent from the flow diagram, pairs of elements are com-
bined and, except for the first and last element in each trans-
form phase, the results go to other positions. An alternative
is to rearrange the computations into natural (Hadamard) or-

der which does allow for in-place computation. It is this or-
dering that we employ in computing Haar spectra using de-
cision diagrams.

The natural (Hadamard) order Haar transform can be de-
fined as follows (we use Hn to distinguish this transform
from the sequency ordered Haar transform Kn):

Hn
= Bn

+ Dn

Dn
=

�
1 1

0 0

�

Dn�1

Bn
=

�
1 0

0 1

�

 Bn�1

+

�
0 0

1 �1

�

 Dn�1

D0
= [1];B0

= [0] (17)

For example, for n = 3 the above yields:

H3
=

2
66666666664

1 1 1 1 1 1 1 1

1 �1 0 0 0 0 0 0

1 1 �1 �1 0 0 0 0

0 0 1 �1 0 0 0 0

1 1 1 1 �1 �1 �1 �1

0 0 0 0 1 �1 0 0

0 0 0 0 1 1 �1 �1

0 0 0 0 0 0 1 �1

3
77777777775

Numbering the rows of K3 from 0 to 7, the rows of H3 ad-
here to the permutation [0,4,2,5,1,6,3,7]. Hence, the spec-
tral coefficients determined using Hn in place of Kn will be
similarly permuted.

We first show that the formulation given generates the
Haar functions and then consider the related inverse trans-
form..

Theorem 4.1 Equation 17 generates the complete set of
Haar functions in natural order.

Proof: Two initial observations for all n: Dn is of order
(2n � 2

n) and consists of a top row of all 1’s with 0’s ev-
erywhere else; Bn is of order (2n�2

n) and has a top row of
all 0’s.

It is apparent from the definition of Hn that it can be writ-
ten

Hn
=

�
Bn�1

+ Dn�1 Dn�1

Dn�1 Bn�1 � Dn�1

�
(18)

It is useful to let Cn be a (2n � 1� 2
n) matrix which is Bn

with its top row removed. Hn can then be written

Hn
=

2
66664

1 1 � � �1 1 1 � � �1
Cn�1

0

1 1 � � �1 �1 � 1 � � � � 1

0 Cn�1

3
77775

where 0 denotes a (2n�1 � 1� 2
n�1) matrix of 0’s.

The top row of Hn consists of 2n 1’s and isH 0

0
. The row

at the top of Hn is 2n�1 1’s followed by 2
n�1 -1’s, which is

H
0

1
. It is important to note from Equation 13 that these are

the only two Haar functions that are non-zero in both halves
of the definition space. We must next show that the remain-
ing Haar functions are also generated which we do by induc-
tion.

Clearly

H1
=

�
1 1

1 �1

�

Assume Hn�1 includes all the (n�1)
th order Haar functions

which means Cn�1 includes them all exceptH 0

0
. This is pre-

cisely what is required since a review of Equation 13 show
the second and higher order Haar functions generated for
n are two occurrences of the second and higher order Haar
functions generated for the case ofn�1 one in the lower half
of the definition space and the second in the higher half. It
follows that Hn includes all Haar functions.

It is also clear from the construction that Hn orders the
Haar function in natural order, that is earliest zero-crossing
first.

A fast transform technique for the naturally ordered Haar
transform is easily developed from the recursive structure in
Equation 17. Figure 7 illustrates the situation for n = 3. It
is interesting to observe that the structure is essentially the
structure from the Walsh case with certain “butterflies” re-
moved. The number of computations is the same as for the
sequency ordered Haar transform, namely 2

n�2 but the sig-
nificant advantage is the computations can be done in place
since each butterfly combines two elements and places the
results in the same locations.

0

0

0

0

0

1

1

1

1

0

0

1

 -1

1

 -1

2

1

-1

01

3

1

1

0

-1

 -1

0

 -1

Figure 7. Example of Fast Transform Compu-
tation of Haar Spectrum in Natural Order

We next consider the inverse of Hn.

Theorem 4.2 Hn�1
=

1

2n
Gn where

Gn
= Cn

+ En

En
=

�
1 0

1 0

�

 En�1

Cn
=

�
2 0

0 2

�

 Cn�1

+

�
0 1

0 �1

�

 En�1

E0
= [1];C0

= [0] (19)

Proof: From Equations 17 and 19 we have

HnGn
= (Bn

+ Dn
) (Cn

+ En
)

= BnCn
+ BnEn

+ DnCn
+ DnEn

From the previous theorem we know the rows of Bn are Haar
functions (with the exception of H 0

0
) each with an equal

number of +1’s and -1’s, so the sum across each row of Bn

is 0. Hence, BnEn
= 0 where 0 denotes the matrix of all

0’s.
Cn is constructed as the transpose of Bn with multipliers

applied to certain columns. Hence each column of Cn sums
to 0, so DnCn

= 0 and

HnGn
= BnCn

+ DnEn

DnEn yields a matrix with 2
n in the top left corner and 0’s

everywhere else.
Now

BnCn
=

��
1 0

0 1

�

 Bn�1

+

�
0 0

1 �1

�

Dn�1

�
��

2 0

0 2

�

 Cn�1

+

�
0 1

0 �1

�

 En�1

�

Multiplying this through, applying the Kronecker mixed
product rule and multiplying the constant matrices we have

BnCn
=

�
2 0

0 2

�

 Bn�1Cn�1

+�
0 1

0 �1

�

 Bn�1En�1

+�
0 0

2 �2

�

Dn�1Cn�1

+�
0 0

0 2

�

Dn�1En�1

As above, Bn�1En�1
= Dn�1Cn�1

= 0 so

BnCn
=

�
2 0

0 2

�

Bn�1Cn�1

+

�
0 0

0 2

�

Dn�1En�1

We hypothesize that BnCnis a diagonal matrix with a 0 in
the top left entry and 2

n for every other diagonal entry. It is
readily verified that this is the case for n = 1. Assuming, it
is true for n�1 and substitutingwe find it is true for n since
Dn�1En�1 is a matrix with 2

n�1 in the top left corner and

0’s elsewhere. Substitutingthis result back we find HnGn
=

2
nIn and the theorem is proven. 2

Figure 8 illustrates the fast reverse transform procedure
for n = 3. As in the sequency case, a value which passes
through a phase without going through a “butterfly” must be
multiplied by 2.

0

0

0

0

0

8

8

8

4

4

0

0

4

 -4

4

 -4

3

1

1

0

-1

0

 -1

 -1

4

2

2

0

-2

 -2

0

 -2

Figure 8. Example of Fast Transform Compu-
tation of Inverse Haar Transform in Natural
Order

5 Relationships Amongst the Transforms

Since each of the transforms discussed has an inverse it is
clearly possible to create a transform from one spectral do-
main to another in the worst case by simply passing through
the Boolean functional domain. The issue is of course can
such a transformation be done more efficiently.

For example, as identified in [16], if S is the arithmetic
spectrum of a function, its Walsh spectrum R in R-encoding
is given by R = Wn

(An
)
�1S. (An

)
�1S transforms the

arithmetic spectrum to the functional domain after which
the multiplication by Wn yields the Walsh spectrum. It is
more efficient of course to treat Wn

(An
)
�1 as a single ma-

trix which we can write as
nO
i=1

W1

!
nO
i=1

�
A1
�
�1

!

By the properties of the Kronecker product this can be writ-
ten as

nO
i=1

W1
�
A1
�
�1

So the transform from the arithmetic to the Walsh domain
can be accomplished using the transform matrix

Tn
=

nO
i=1

�
2 1

0 �1

�

which can be used as the basis for a fast transform approach.
This is illustrated for n = 3 in Figure 9. Following a similar

0

-2

0

-1

-1

1

3

1

2

-1

1

1

 -1

0

 -3

2

-2

-1

1

1

 0

0

-3

3

-1

1

1

1

-1

- 1

-3

1

The dark lines indicate multiplication by 2.

Figure 9. Example of Direct Fast Transform
from the Arithmetic to Walsh Spectrum

approach, we can show that

Tn
=

1

2n

nO
i=1

�
1 1

0 �2

�!

is a direct transform from the Walsh to the arithmetic spec-
tral domain.

Transforming to and from the Haar domain is also pos-
sible. We here consider Walsh to Haar and Haar to Walsh
transforms. arithmetic to Haar and Haar to arithmetic trans-
forms can be developed in a similar fashion.

Theorem 5.1 The Walsh-Hadamard spectrum of a function
can be transformed to the natural order Haar spectrum us-
ing the transform

Tn
=

1

2n
(Pn + Qn

)

Pn
=

�
1 1

1 �1

�

 Pn�1 +

�
0 0

0 2

�

Qn�1

Qn
=

�
2 0

0 0

�

 Qn�1

P0
= [0] Q0

= [1]

Proof: We need to transform from the Walsh to the function
domain and then to the Haar domain. The transform is thus
given by

Tn
= Hn

�
1

2n
Wn

�
Employing Equation 17 we have

Hn

�
1

2n
Wn

�
=

1

2n
(BnWn

+ DnWn
)

By substitution and applying the Kronecker mixed product
rule we have

BnWn
=

�
1 0

0 1

� �
1 1

1 �1

�

 Bn�1Wn�1

+

�
0 0

1 �1

� �
1 1

1 �1

�

 Dn�1Wn�1

and

DnWn
=

�
1 1

0 0

� �
1 1

1 �1

�

 Dn�1Wn�1

Defining Pn = BnWn and Qn
= DnWn we have

Pn =

�
1 1

1 �1

�

 Pn�1 +

�
0 0

0 2

�

 Qn�1

and

Qn
=

�
2 0

0 0

�

Qn�1

Substitution shows P0
= [0] and Q0

= [1] and the theorem
is proven. 2

Theorem 5.2 The natural order Haar spectrum of a func-
tion can be transformed to the Walsh-Hadamard spectrum
using the transform

Tn
=

1

2n
(Pn + Qn

)

Pn
=

�
2 2

2 �2

�

 Pn�1 +

�
0 0

0 2

�

Qn�1

Qn
=

�
2 0

0 0

�

 Qn�1

P0
= [0] Q0

= [1]

Proof: The proof is analogous to the proof of Theorem 5.1.
2

These two theorems are the basis for fast transform pro-
cedures as illustrated in Figures 10 and 11. Note that while
the structure of the transform is the same in each case, the
butterflies in the Haar to Walsh direction are all scaled by a
factor of 2. The structure is similar to the Walsh butterfly
diagram presented earlier except the first butterfly in each
group is replaced by the straight through passage of the two
data values scaled by 2.

The above approach of combining transforms to go from
one spectral domain to another can not be used when the
Reed-Muller is involved because it is carried out over
GF (2) while the others are carried out over the integers.
However, it was shown in [16] that the Reed-Muller spec-
tral coefficients can be found by taking the modulo-2 of the
absolute values of the arithmetic coefficients, a result that is
not unexpected given the similar nature of the two transform

3

-1

1

1

1

-1

-3

6

-2

2

2

2

 -2

- 2

 -6

12

0

4

-4

4

-4

- 4

8

24

8

8

0

-8

-8

0

-8

-1

Figure 10. Example of Fast Transform from
Walsh to Haar Speatrum

3

1

1

0

-1

-1

-1

6

2

2

0

-2

 -2

0

 -2

12

-8

4

-4

-4

 0

0

4

24

-8

8

8

8

-8

- 8

-24

0

Figure 11. Example of Fast Transform from
Haar to Walsh Spectrum

matrices. Hence, it is possible to express the transform from
a domain to the Reed-Muller domain as a matrix multipli-
cation followed by the taking of the modulo-2 of the abso-
lute values of the result. For the domains considered here,
the matrix multiplicationcan be implemented as a fast trans-
form.

6 Decision Diagram Implementation

Reduced ordered binary decision diagrams (ROBDD) [6]
are now a widely used data structure in many applications
including VLSI CAD. Many extensions to the basic idea
have been introduced including multi-terminal binary deci-
sion diagrams (MTBDD)[7] and edge-valued binary deci-
sion diagrams (EVBDD) [17]. (MTBDDs are also called Al-
gebraic DDs (ADDs) [2].) We assume the reader is famil-
iar with decision diagrams and refer anyone who is not to
the extensive literature on the subject. In terms of notation,
each nonterminal vertex v is labeled with a variable from X

denoted index(v) and has two outgoing edges denoted as
low(v) and high(v). Each terminal vertex v is labeled by a
value(v) from T and has no outgoing edges, hence no suc-
cessors. For an ROBDD, T contains 0 and 1 while for an
MTBDD, T contains a set of integer values. An EVBDD
has factors on certain edges and reduces the complexity of
an MTBDD. Details can be found in [17].

It is insightful to present the fast DD transformation tech-
nique by first considering the case of transformations over
trees. Although this is impractical for implementation, it
does allow for the basis of the method to be easily explained.
Unlike the BDD representation, a tree representation is com-
plete and consists of 2

n � 1 non-terminal vertices and 2
n

terminal vertices.
In terms of graph operations, the one-variable Walsh

transform replaces the subtree low(v) with a subtree repre-
senting the sum of the original subtrees low(v) and high(v)
and correspondingly replaces the subtree high(v) with a
subtree representing the difference of the original subtree
low(v) minus the subtree high(v). This is the butterfly op-
eration for the Walsh transform.

In terms of implementation, computing the sum (or dif-
ference) of two MTBDDs is typically performed as a recur-
sive procedure similar to the classic ite operation used in
most BDD package implementations [5].

The order of transformation of the tree is important. Ini-
tially, transforming the terminal vertices to the integers �1

allows for the non-terminal nodes at the bottom of the tree
to be transformed. By successively applying the transfor-
mations in a bottom-up manner, the tree representing the
Boolean function is transformed to a tree representing the
Walsh spectrum in Hadamard order from left to right. Fig-
ure 16 illustrates this procedure. The vertices drawn with
dashed lines indicate portions of the graph that have under-
gone the transformation.

This technique can be stated in a succinct form as a depth-
first algorithm as given in Figure 12 where Value() is a func-
tion which returns the value of a terminal node, Label() is
a function which returns the label of a nonterminal node,
and New Terminal() and New Nonterminal are procedures
which produce new nodes of the specified types.

The tree-based algorithm offers no computational advan-
tage over the direct computation of the spectrum using ma-
trix algebra since the size of the tree is exponential in the
number of dependent function variables. In order to take ad-
vantage of shared topological isomorphic subgraphs as are
found in reduced DD structures, the tree-based algorithm
must be modified to account for the case when non-terminal
variables are present along a path without subsequent val-
ued level indices. This case never occurs in a tree but often
does occur in a reduced DD. As an example, consider the
case where the function f = x1x3+x2x3+x1x2x3 is to be
transformed to the Walsh domain. Figure 13 contains a di-

Walsh_Tree_Transform (f)
if(f is a terminal) return
Walsh_Tree_Transform(Low(f))
Walsh_Tree_Transform(High(f))
low_temp = Tree_Add(Low(f),High(f))
High(f) = Tree_Sub(Low(f),High(f))
Low(f) = low_temp

Tree_Add(g,h)
if(g is a terminal)
return(New_Terminal(Value(g)+Value(h))

return(New_Nonterminal(Label(g),
Tree_Add(Low(g),Low(h)),
Tree_Add(High(g),High(h))))

Tree_Sub(g,h)
if(g is a terminal)
return(New_Terminal(Value(g)-Value(h))

return(New_Nonterminal(Label(g),
Tree_Sub(Low(g),Low(h)),
Tree_Sub(High(g),High(h))))

Figure 12. Pseudo-code for Tree-based Walsh
Transformation

agram representing the reduced BDD of this function with
variable order x1 � x2 � x3. As is easily seen, the path
specified by x1 = 0 and x3 = 0 skips the intermediate vari-
able x2. However, in transforming the non-terminal vertex
x1, the absence of a vertex representing variable x2 cannot
be ignored and must be inherently considered.

An absent vertex is in effect a vertex v with low(v) =

high(v). Applying the Walsh butterfly to such a vertex re-
places the subtree low(v) by that subtree multipliedby 2 and
the subtree high(v) by the terminal value 0. Based on this
observation the algorithm for transforming a BDD is given
in Figure 14 where for ease of explanation we assume the
labels of the nonterminals are ordered increasingly from the
root of the BDD towards the terminals and Label() applied
to a terminal yields a maximum value. Twice() doubles the
terminal values of the argument BDD an operation which is
easily accomplished if EVBDD are used.

The approach illustrated in Figure 14 for the Walsh case
can be applied to the other transforms described above. The
major complication is to identify when butterflys should or
should not be applied. For example, the case for the tree-
based computationof Haar spectra is addressed in Figure 15.

7 Concluding Remarks

Direct transformation amongst the Walsh, Haar, Arith-
metic and Reed-Muller spectral domains has been consid-

x1S

x2S

x3S

x3S

- 1 + 1

+ 1 - 1

0

0

0

0

1

1

1

1

Figure 13. Reduced BDD for the Example
Function

ered. It has been shown that fast transform techniques
are possible with the exception of transformation from the
Reed-Muller domain. Implementation using decision dia-
gram methods has been outlined.

Current work involves developing efficient generic uni-
versal program code for transforming from one domain to
another. We are also considering how the transforms pre-
sented can be used to map spectral conditions, e.g. symme-
try conditions, from one domain to another.

References

[1] N. Ahmed and K. R. Rao. Orthogonal Transforms for Digital
Signal Processing. Springer-Verlag, New York, New York,
1975.

[2] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii,
A. Pardo, and F. Somenzi. Algebraic decision diagrams and
their application. In Int’l Conf. on CAD, pages 188–191,
1993.

[3] K. G. Beauchamp. Applications of Walsh and Related Func-
tions. Academic Press, 1984.

[4] P. W. Besslich. Spectral Techniquesand Fault Detection, (M.
G. Karpovsky, editor). Academic Press Publishers, Boston,
Massachusetts, 1985.

[5] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient imple-
mentation of a BDD package. In Design Automation Conf.,
pages 40–45, 1990.

[6] R.E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Trans. on Comp., 35(8):677–691, 1986.

[7] E. Clarke, M. Fujita, P. McGeer, K.L. McMillan, J. Yang, and
X. Zhao. Multi terminal binary decision diagrams: An effi-
cient data structure for matrix representation. In Int’l Work-
shop on Logic Synth., pages P6a:1–15, 1993.

[8] E.M. Clarke, M. Fujita, and X. Zhao. Hybrid decision dia-
grams - overcoming the limitations of MTBDDs and BMDs.
In Int’l Conf. on CAD, pages 159–163, 1995.

[9] J. W. Cooley and J. W. Tukey. An algorithm for the machine
calculation of complex Fourier series. Math. Computation,
19:297–301, 1965.

[10] A. Graham. Kronecker Products and Matrix Calculus: with
Applications. Ellis Horwood Limited and John Wiley &
Sons, New York, 1981.

[11] A. Haar. Zur Theorie der orthogonalen Funktionensysteme.
Math. Ann., 69:331–371, 1910.

[12] K. D. Heidtmann. Arithmetic spectrum applied to fault de-
tection for combinational networks. IEEE Trans. on Comp.,
40(3), 1991.

[13] S. L. Hurst. The Logical Processing of Digital Signals.
Crane-Russack, New York, 1978.

[14] S.L. Hurst, D.M.Miller, and J.C.Muzio. Spectral Techniques
in Digital Logic. Academic Press Publishers, 1985.

[15] M. Karpovsky. Finite Orthogonal Series in the Design of
Digital Devices. Wiley and JUP, 1976.

[16] S. K. Kumar and M. A. Breuer. Probabilistic aspects of
Boolean switching functions via a new transform. Journal
of the ACM, 28(3):502–520, 1981.

[17] Y.-T. Lai and S. Sastry. Edge-valued binary decision dia-
grams for multi-level hierarchical verification. In Design Au-
tomation Conf., pages 608–613, 1992.

[18] D. E. Muller. Application of Boolean algebra to switching
circuit design and error detection. IRE Transactions, 1:6–12,
1954.

[19] H. Rademacher. Einige Sätze über Reihen von allgemeinen
orthogonal Funktionen. Math. Ann., 87:112–138, 1922.

[20] I.S. Reed. A class of multiple-error-correcting codesand their
decoding scheme. IRE Trans. on Inf. Theory, 3:6–12, 1954.

[21] J. L. Shanks. Computation of the fast Walsh-Fourier trans-
form. IEEE Trans. on Comp., 18:457–459, 1969.

[22] S.B.K. Vrudhula, M. Pedram, and Y.-T. Lai. Edge valued
binary decision diagrams. In T. Sasao and M. Fujita, edi-
tors, Representation of Discrete Functions, pages 109–132.
Kluwer Academic Publisher, 1996.

[23] J. S. Wallis. Hadamard Matrices. (Lecture Notes No. 292),
Springer-Verlag, 1972.

[24] J. L. Walsh. A closed set of normal orthogonal functions.
American Journal of Mathematics, 55:5–24, 1923.

Walsh_BDD_Transform (f)
if(f is a terminal) return
if(f has already been transformed)
return

Walsh_BDD_Transform(Low(f))
Walsh_BDD_Transform(High(f))
low_temp = BDD_Add(Low(f),High(f))
High(f) = BDD_Sub(Low(f),High(f))
Low(f) = low_temp

BDD_Add(g,h)
if(g and h are terminals)
return(New_Terminal(Value(g)+Value(h))

if(Label(g)=Label(h))
return(New_Nonterminal(Label(g),

BDD_Add(Low(g),Low(h)),
BDD_Add(High(g),High(h))))

else if(Label(g)<Label(h))
return(New_Nonterminal(Label(g),

BDD_Add(Low(g),Twice(h)),
High(g))

else return(New_Nonterminal(Label(h),
BDD_Add(Low(h),twice(g)),

High(h))

BDD_Sub(g,h)
if(g and h are terminals)
return(New_Terminal(Value(g)-Value(h))

if(Label(g)=Label(h))
return(New_Nonterminal(Label(g),

BDD_Sub(Low(g),Low(H)),
BDD_Sub(High(g),High(h))))

else if(Label(g)<Label(h))
return(New_Nonterminal(Label(g),

BDD_Sub(Low(g),Twice(h)),
High(g))

else return(New_Nonterminal(Label(h),
BDD_Sub(Low(h),Twice(g)),

High(h))

Figure 14. Pseudo-code for BDD-based Walsh
Transformation

Haar_Tree_Transform (f)
if(f is a terminal) return
Haar_Tree_Transform(Low(f))
Haar_Tree_Transform(High(f))
low_branch = Low(f)
while(low_branch not a terminal)
low_branch = Low(low_branch)

high_branch = High(f)
while(high_branch not a terminal)
high_branch = Low(high_branch)

temp_value = Value(low_branch)+Value(high_branch)
Value(high_branch) = Value(low_branch)-Value(high_branch)
Value(low_branch) = temp_value

Figure 15. Pseudo-code for the Tree-based
Haar Transformation

x1S

x2S x2S

x3 W x3S x3S x3S

0 - 2 - 1 + 1 - 1 + 1+ 1 - 1

0

0

0 0 0 0

0

1 1 1 1

1 1

1
x1S

x2S x2S

x3 W x3 W x3S x3S

0 - 2 0 - 2 - 1 + 1+ 1 - 1

0

0

0 0 0 0

0

1 1 1 1

1 1

1

x1S

x2 W x2S

x3S x3S

- 1 + 1+ 1 - 1

0

0

0 0

0

1 1

1 1

1
x1S

x2S

x3 W x3S

- 1 + 10 + 2

0

0 0

0

1 1

1

1

x1S

x2S

0

0 1

1
x1S

x2 W x2 W

0

0 01 1

1

x1 W0 1

x3 W x3 W

0 - 4 0 0

0 01 1

x2 W
0 1

x3 W x3 W

0 - 4 0 0

0 01 1

x2 W
0 1

x3 W x3 W

0 - 4 0 0

0 01 1
x3 W

0 + 2

0 1
x3 W

0 - 2

0 1
x3 W x3 W

0 - 4 0 0

0 01 1
x3 W

0 0

0 1
x3 W

0 + 4

0 1

x2 W x2 W
0 01 1

x3 W x3 W

0 - 4 0 + 4

0 01 1
x3 W

0 - 4

0 1
x3 W

0 - 4

0 1

Figure 16. Example of a Tree-based Walsh
Transformation

