Transformationsamongst the Walsh, Haar, Arithmetic and Reed-Muller
Spectral Domains

M. A. Thornton D. M. Miller R. Drechsler

Electrical and Computer Engineering Computer Science Siemens AG
Mississippi State University University of Victoria Munich
Starkville, MS Victoria, BC Germany
USA CANADA address

mitch@ece.msu.edu

Abstract

Direct transformation amongst the Walsh, Haar, Arith-
metic and Reed-Muller spectral domainsis considered. Ma-
trix based techniques are developed and it is shown that
these can be implemented as fast in-place transforms. It is
also shown that these transforms can be implemented di-
rectly on decision diagram representations.

1 Introduction

Transformation between the Boolean and various spec-
tral domains has been extensively studied [1, 3, 13, 14, 15].
In this paper, we review the fundamental structures and
propertiesof spectral transforms and the resulting spectra of
Boolean functions. Matrix based computation of the spec-
trais considered as are fast transform techniques derived
from the matrix structures. The contribution of this paper
is to show that fast transform techniques can be developed
for direct transformation amongst certain spectral domains,
i.e. transforms from one spectral domain to another that do
not pass through the Boolean domain. These fast transform
techniques can be directly implemented on decision diagram
representations.

The paper isorganized asfollows. Section 2 providesthe
necessary mathematical background for this paper. Section
3 introduces the spectral domains considered. Fast trans-
form techniques are discussed in Section 4. Direct trans-
forms amongst the spectral domains are discussed in Sec-
tion 5. Section 6 considersthe use of decision diagram tech-
niques to implement the fast transforms. The paper con-
cludes with some closing remarks and suggestions for fur-
ther research.

mmiller@csr.uvic.ca drechsle@informatik.uni-freiburg.de

2 Background

An n-input compl etely-specified Boolean function f can
berepresented by Y = {mqg, m1, ms ... ms-_1}* acolumn
vector with 27 entries each giving the functional value for
thecorrespondingminterm. Y isoften called thetruth vector
for f.

f represented by Y can be transformed from the Boolean
to a spectral domain as follows:

R=T"Y 1)

where T" isa 2" by 2" transform matrix the precise spec-
ification of which defines the spectral domain in question.
In many cases, the matrix has a simple recursive structure
which can be used to significant computational advantage as
will be shown.

We restrict our interest to invertible transforms, hence:

Y =(T")"'R

The conseguence isthat thetransforms between the Boolean
and spectral domains fully preserve information, but, as is
well known, the spectral domains make certain properties
easier to consider than in the Boolean domain, and different
spectral domainsilluminate different functional properties.

Often the transform matrix can be expressed as a se-
guence of Kronecker products of a single base matrix. We
here providea brief review of the Kronecker product. More
detail can befoundin[10].

Given amatrix A of order (m x n) with the element in
the i** row and j** column denoted «,; and a matrix B of
order (r x s), the Kronecker product A @ B isgiven by

a1 B a2B -+ a;,B

aB @B - ay,B
A®B=

amiB a,2B Amn B

The product matrix has order (mr x ns). Note that unlike
the normal matrix product, the Kronecker product is defined
for any matrix orders.

For matrices A, B, C and D and a scalar «, thefollowing
properties hold

(aA)® B a(A®B)

A®(aB) = a(A®B)
(A+B)oC = A@C+BoC
A©(B+C) = A@B+A®C
Ae(B®C) = (A@B)aC

(A@B)Y = A'@B

(A®B)(C®D) = AC®BD @)

AoB)™t = AlgB™!

Equation 2 is termed the mixed product rule and is only
validwhen the matrices are of appropriate dimension for the
normal matrix products.

Finally, two observations from the above properties are
particularly relevant to our work. The Kronecker product
of two symmetric matrices isitself a symmetric matrix, and
since the Kronecker product is an associative operation, the
order of application of a sequence of Kronecker products
does not matter.

Although not stated in [10], it is clear from the develop-
ment there that the Kronecker product properties we make
use of in this Chapter hold over GF(2), afact that will be
useful below in the consideration of the Reed-Muller trans-
form.

The following theorem concerning inverses of matrices
expressed as Kronecker products of a base matrix is very
useful.

Theorem 2.1 Given a square invertiblematrix A,

-1 n
=A™
i=1

RA
i=1

Proof: This followsimmediately by the iterative applica-
tion of theidentity (A ® B)~! = A~! @ B™! and the asso-
ciativity of the Kronecker product. O

3 Spectral Transforms

In this section we present four particular spectral trans-
forms that have been extensively studied in the literature:
the Walsh, the Reed-Muller, the Arithmetic, and the Haar
transforms.

3.1 Walsh Transform

Perhaps the most well known and most widely studied
spectral transforms are based on a set of orthogonal func-
tions defined by J. L. Walsh in 1923 [24] which are an ex-
tension of a set of functionsdefined by H. Rademacher [19]
ayear earlier. The transform itself is a form of Hadamard
matrix [23].

The Walsh transform matrix W™ in Hadamard order can
be defined as

Wn—l

Wo=1[1] W":[Wn_1 Wn_l]

_Wn—l

An equival ent definition using the Kronecker product is par-
ticularly useful here

R
W—[1 ~1

Wn — Wl ® Wn—l
SincetheKronecker product isassociative, thismay bewrit-

ten as n
W? = ®W1
=1

Therowsof W"are the set of 2" n-variable Walsh functions
of which the n-variable Rademacher functionsare a subset.
In addition to the Hadamard (Wal sh-Hadamard), the Walsh
(Walsh-Kaczmarz), the Paley-Walsh, and the Rademacher-
Walsh orderings have been studied [4][14] . The Hadamard
ordering has seen most use since the simple recursive struc-
ture of the transform matrix alows for ‘fast transform’

methods [9] [21]. The Hadamard, Walsh and Walsh-Paley
orderings share the very useful property that the transform
matrix isits own inverse up to a scaling factor of 2% aswill

be shown below for the Hadamard case. The practical im-
portance of thisis that the same computational procedure
can be used for transforming between the function and spec-
tral domains with the simple adjustment of scaling.

The Walsh spectrum R of f isgiven by

and

R=W"Y

where the matrix multiplicationis carried out over the inte-
gers, i.e. logic O(1) istreated as the integer O(1). We term
this R-encoding.

An aternate formulation represents the function by the
vector Z inwhichlogicOiscoded as+1 andlogic 1iscoded
as —1, whichweterm S-encoding. In thiscase the spectrum
isgiven by

S=wW"Z
SinceZ =1 — 2Y, it can be shown that

s =2" = 2rg; s = —2ry,VaC{l,2...n}

so the information content of the R and the S spectral coef-
ficientsisthe same.

Theorem 3.1 (W")~! = Lw”.

Proof: The proof follows from Theorem 2.1, the fact
(W'~ = LW and the fact that scalar multipliers can be
factored out of a Kronecker product. a

3.2 Reed-Muller Transform

The Reed-Muller transfrom is motivated by the seminal
work in 1954 of 1.S. Reed [20] and R.E. Muller [18] which
led to considerableinterest in the Reed-Muller (AND-XOR)
expansion of Boolean functions. The transform matrix M ™
is defined by

" Mn—l 0
MO :[1] M = |: Mn—l Mn—l :| (3)
and the spectrum R is given by
R=M"Y (4)

Inthiscase, the matrix multiplicationisover GF(2)i.e.in-
teger addition is replaced with summation modulo-2. M™
can be expressed using the Kronecker product as

L [1 o0
w7

n

M™ = (M! (5)

i=1
Theorem 3.2 (M")=! = M™ over GF(2).

Proof: The proof follows from Theorem 2.1 and the fact
(MY~ = M! over GF(2). m

From this theorem we have:
Y =M"R (6)

The above shows that Y is a linear combination (over
G'F(2)) of the columns of M™ for which the relevant co-
efficient in R is 1. Each column of M"™ represents a func-
tionwhichisthelogical AND of asubset of z1, @2, ..., 2,.
The leftmost column isthe constant function 1 which corre-
spondsto the AND of no variables. Hence the Reed-Muller
spectrum identifiesarepresentation of aBoolean functionas
asum over GF'(2) of acollection of products of variables.
To be precise,
27 —1
Y = r;M? 7)
i=0

where M7 isthe i*" column of M™.

3.3 Arithmetic Transform

The arithmetic transform [12], which is also known as
the probability transform[22] and the inverse integer Reed-
Muller transform [8] was initialy introduced by S.K. Ku-
mar and M.A. Breuer in 1981 [16] in work on probabilistic
aspects of Boolean functions. The transform matrix has a
recursive structure anal ogous to that of the Walsh and Reed-
Muller transforms and is given by

n An—l 0
AO :[1] A" = |: _An—l An—l :| (8)
or aternatively
1 10
S
A" = (R)A! (9)
i=1
As before, we define the spectrum as
R =A"Y (10)

Theorem 3.3

i=1

w1]

Proof: The proof follows from Theorem 2.1 and the fact
10
Iy—1 _
(At = [11] O

Note that while (A')~1 = M*, their use is quite differ-
ent since the arithmetic spectrum is computed over the in-
tegers whereas the Reed-Muller spectrum is computed over
GF(2). Itisfor this reason the arithmetic transform was
termed the inverse integer Reed-Muller transform in [8].

3.4 Haar Transform

The orthogona Haar functions presented by A. Haar in
1910[11] form aset of 2" continuous orthogonal functions
over theinterval [0,1]. They can be defined asfollowswhere
k is over the continuousinterval Oto 1:

HY)(k) = +1.0
: g ¢+3
Hi(k) = (V2)7'(41.0), for 5T <k < 22._12
1
i q+3 g+1
= (V2)'7(-1.0), for 22._12 <k < S
= 0, atall other points (11)

Wherei:1,2,,,,,nandq:0’1’”.’22'—1_1_

Discrete sampling of the set of Haar functions gives a
2" x 2" orthogonal matrix T". Forn = 3,

1 1 1 1 1 1 1 1
1 1 1 1 -1 -1 -1 -1
V2 V2 =2 =2 0 o 0 0
T — 0 0 0 0 V2 V2 V2 -2
2 =2 0 0 0 0 0 0
0 0 2 -2 0 0 0 0
0 0 0 0 2 =2 0 0
0 0 0 0 0 0 2 —2_

T"isacomplete, orthogonal matrix with X2" 71,4 = 27
if ¢ # j and O otherwise. The following result follows di-
rectly.

Theorem 34 [T"]~! = & [T"]".

Notethat T" isnot symmetric so the transpose is needed for
theinverse.

A computationally more practical modified Haar trans-
form K" isderived from T" by normalizing the nonzero en-
triesof T™ to take the values +1 and -1 yielding for n = 3
for example:

K3 =

CooOrRORRER
|
CooOrRORRER

Theorem 3.5 The modifiednormalized Haar transformcan
be expressed as

Kn—l ® [

= [K0 1 1]

K=11] o1 —1]

(12)

Proof: For the modified normalized Haar transform, Equa-
tion 11 becomes:

Hi(k)y = +1
Hi(K) = 41, for g <k< q;j
= -1, for qu:l% <k< (]22—1:11
= 0, at all other points (13)
wherei =1,2,...,nandqg=0,1,...,2"71 — 1.

For i = n, 2°~! Haar functions are defined, each
sampled at 2" points which are ¢ and ¢ + £ for ¢ =
0,1,...,2"=t — 1. Thefirst of these functions, H? (k) is
al, followed by a-1, followed by 2" — 2 0's. The second,
H}(k),istwo O's, followed by a1, followed by -1 followed
by 2" — 4 0's. The ongoing pattern should be apparent and
isillustrated above for the case of n = 3. These functions
in order are the bottom 2”7~ rows of K”. They can be ex-
pressed inmatrix formas 1"~ @ [1 —1].

Fori =1,2,...,n — 1, the Haar functions defined pre-
ceded by (k) are precisely those that compose K™~ and
itisthese functionsthat comprise the upper half of K™. The
differenceisthat to correspond tothe lower half of K™, these
functions must be sampled twice as often. This corresponds
to duplicating the values across the function which can be
expressed in matrix formas K™~ @ [1 1].

Concatenating the two matrix expressions yields Equa-
tion 12. O

Theorem 3.4 does not hold for the normalized Haar trans-
form matrix since while the rows do maintain pairwise or-
thogonality the resultant values are not the same. The in-
verse of K" is given by the following theorem.

e]

Theorem 3.6 (K%)=t = [1]
K = [k

Proof: Let

o fo-be[1] o [5]

and consider K"B". Thisyields

KPR — [Qoo, Qo1]

Quo, Qi
where
Qo = (Kol 1)) (BM@“D
Qi = (< ron (e 30))
Qo = ("ot -1) (BM@“D
Qu = ("ol -1) (I"*@[_;Zj])

Applying the mixed product rule (A @ B)(C @ D) =
A C ® BD and then reducing, the above becomes

(14)

n—lpn—1
KHBHI[QK B 0]

0 on|n—l

We hypothesize that (K")~! = -B". From Equation
14 thisis clearly true when n = 1. Induction on n as-
sumes K" ~1B"~! = [27~11"~!] substituted into Equation
14yieldsK"B" = [2"1"]. Hence (K")~! = 5-B" and the
theorem is proven. O

For n = 3 for example, theinverseis

rT 1 2 0 4 0 0 07
1 1 2 0 —4 0 0 0
1 1 -2 0 0 4 0 0
K¥! = lft1 1 -2 0o 0 -4 0 0
211 -1 0 2 0 0 4 0
1 -1 0 2 0 0 —4 0
1 -1 0 -2 0 0 0 4
L1 -1 0 -2 0 0 0 —4]

Asisapparent from theabove example, (K™)~! isthetrans-
pose of K" with scaling factors applied to certain columns.
From the recursive structure of Equation 14, one can ver-
ify that the appropriate scaling factor is 2 ~* where k isthe
log, (p) and p is the number of non-zero entries in the col-
umn. Itisclear from the definition of K™ that p is aways a
power of 2 so k isaways a positive integer.

4 Transform Procedures

The above spectra can be directly computed by appropri-
atematrix multiplication, however the computational cost of
thisapproach isgenerally prohibitivefor functionsof signif-
icant size. Fortunately, more efficient alternative techniques
exist. In this section, we present so-called fast transform
techniques.

41 Fast Walsh-Hadamard Transform

The recursive definition of the Hadamard-ordered Walsh
transform isthe basis for a fast Hadamard transform (FHT)
method analogous to a fast Fourier transform (FFT) over
discrete data. Observe that

n—1
R:[W

_Wn—l Yl

Wn—l :| YO :|
Wn—l

where Y° and Y! represents a partitioning of Y into two
equal sized subvectors. It follows that

Wn—1Y0+Wn—1Y1
R = |: Wn—lYO _Wn—lYl (15)
_ Wn—l(Y0+Y1)
- |: Wn—l(YO _ Yl) (16)

Theabove showsthat thecomputation of the n'” order trans-
form involvesthe application of (n — 1)** order transforms
totwo subvectorsof Y followed by the addition and subtrac-
tion of the results. Alternatively, the transform can be com-
puted as the addition and subtraction of two subvectors of
Y followed by the application of two (n — 1)*" order trans-
formsto theresultant subvectors. A similar reduction can be
applied to the computation of the (n—1)** order transforms.

Indeed the reduction can be iteratively applied down to the
trivial case of applying W° transforms. The result is that
the objective of computing W"Y is reduced to a sequence
of vector additions and subtractions.

At each iteration, there are twice as many additions and
subtractions as for the previous iteration involving subvec-
tors of half the size. The computational work at each iter-
ation is thus the same. In total, » iterations are involved
with each involving 2™ elements yielding time complexity
O(n2™). The operations can be applied in place on a sin-
glevector so the space complexity isO(2"). Thisisin con-
trast to the matrix multiplication approach where the time
and space complexities are both O(2%7).

The computational sequence arising from the aboveisil-
lustrated in Figure 1 for the case of n = 3. For clarity, we
show the computation as creating new vectorsbut noteagain
that the computation can in fact be donein place. Theinter-
pretation of the butterfly signal flowgraphsin Figure lisas
shown in Figure 2.

The FHT method represents a substantial improvement
over computing the spectrum by matrix multiplication but
it is il prohibitive for large functions due to its exponen-
tial complexity. A major importance of thisapproach isthat
it forms the basis for very efficient decision diagram ap-
proaches.

Figure 1. Example of Fast Transform Compu-
tation of Walsh Spectrum

4.2 Fast Reed-Muller Transform

A similar approach ispossiblefor devel oping afast Reed-
Muller transform since M "has a similar recursive structure
tothat of W". Thesituationfor n = 3isillustratedin Figure
3withtheinterpretation of signal flow subgraph isas shown
in Figure 4. The computationsfor afast Reed-Muller trans-
form are of course over GF'(2).

A+B

B A-B

Figure 2. Interpretation of a “Butterfly” Signal
Flowgraph for the Walsh Transform

0 0 0\ 0
1 1 1 1
1 1 1§\ 1
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 1
1 1 1 1

Figure 3. Example of Fast Transform Compu-
tation of Reed-Muller Spectrum

4.3 Fast Arithmetic Transform

The situation for the arithmetic transform is analogous
to the Walsh and Reed-Muller cases and thus not explicitly
shown here.

4.4 Fast Haar Transform

The signa flowgraph for a fast normalized Haar trans-
form can beidentified directly from the recursive definition
of K™ givenin Theorem 12. The case for n = 3 is depicted
in Figure 5. The “butterfly” structures are as defined in the
Walsh case, Figure 2.

A A

B A+B (mod 2)

Figure 4. Interpretation of a Signal Flow Sub-
graph for the Reed-Muller Transform

B ook o B ow

Figure 5. Example of Fast Transform Compu-
tation of Haar Spectrum

Figure 5 depicts the normalized Haar transform. For the
unnormalized transform defined by Equation 11 the struc-
ture is the same but appropriate multipliers must be applied
in the computations.

The inverse transform has the reverse structure and once
again appropriate multipliers must be applied, thistime in
both the normalized and unnormallzed cases. Figure 6 de-
picts the situation for the inverse normalized transform us-
ing the same example as Figure 5. A value passing through
a phase without going through a “ butterfly” is multiplied by
2. Theresultisscaled by 23.

3 4
1 2
0 0
-1 -2
1 D)
1 2
0 0
-1 D)

Figure 6. Example of Fast Transform Compu-
tation of Inverse Haar Transform

The Haar transform considered thus far and particularly
the fast transform illustrated in Figure 5 is in sequency or-
der. A drawback isthat it can not be doneinplace since asis
apparent from the flow diagram, pairs of elements are com-
bined and, except for thefirst and last element in each trans-
form phase, the results go to other positions. An aternative
isto rearrange the computationsinto natural (Hadamard) or-

der which does allow for in-place computation. It isthisor-
dering that we employ in computing Haar spectra using de-
cision diagrams.

The natural (Hadamard) order Haar transform can be de-
fined as follows (we use H" to distinguish this transform
from the sequency ordered Haar transform K"):

H* = B"4D"

n _ 1 1 n—1

o = [1 1]en

n o __ 10 n—1 0 0 n—1
= [y V]ees][] V]eo

D" = [1],B" =[] (17)

For example, for n = 3 the above yields:

1111 1111
1 -1 0 0 0 0 0 0
1 1 -1 -1 0 0 0 0
|0 0 1 -1 0 0 0 0
11 1 1 -1 -1 -1 -1
0 0 0 0 1 -1 0 0
o 0 0 0 1 1 -1 -1
0 0 0 0 0 0 1 -1 |

Numbering the rows of K* from 0to 7, the rows of H® ad-
here to the permutation [0,4,2,5,1,6,3,7]. Hence, the spec-
tral coefficients determined using H” in place of K™ will be
similarly permuted.

We first show that the formulation given generates the
Haar functions and then consider the related inverse trans-
form..

Theorem 4.1 Equation 17 generates the complete set of
Haar functionsin natural order.

Proof: Two initial observations for al »: D" is of order
(2™ x 2™) and consists of atop row of all 1'swith 0's ev-
erywhereelse; B” isof order (2" x 2™) and has atop row of
al 0's.

Itisapparent fromthe definitionof H™ that it can bewrit-
ten

_ Bn—1+Dn—1 Dn—l

Hn it Dn—l Bn—l _ Dn—l (18)

Itisuseful toletC™ bea (2™ — 1 x 2") matrix whichisB”™
withitstop row removed. H" can then be written

cr! 0
H" =
117---1 -1 —1---—1
0 Cn—l

where 0 denotesa (27! — 1 x 27~ 1) matrix of O's.

Thetoprow of H" consistsof 2 1’sandis H,. The row
atthetop of H” is2"~! 1'sfollowed by 27~ -1's, whichiis
HY. It isimportant to note from Equation 13 that these are
the only two Haar functionsthat are non-zeroin both halves
of the definition space. We must next show that the remain-
ing Haar functionsare al so generated which we do by induc-

tion.
1 1
1_
=]

Clearly
AssumeH" ! includesall the (n—1)*" order Haar functions
whichmeansC" ™! includesthem all except H_. Thisispre-
cisely what isrequired since a review of Equation 13 show
the second and higher order Haar functions generated for
n are two occurrences of the second and higher order Haar
functionsgenerated for the case of n—1 oneinthelower half
of the definition space and the second in the higher half. It
followsthat H" includes all Haar functions.

Itis also clear from the construction that H" orders the
Haar functionin natural order, that is earliest zero-crossing
first.

A fast transform technique for the naturally ordered Haar
transformiseasily developed from therecursive structurein
Equation 17. Figure 7 illustratesthe situationfor n = 3. It
is interesting to observe that the structure is essentially the
structure from the Walsh case with certain “butterflies’ re-
moved. The number of computationsis the same as for the
sequency ordered Haar transform, namely 2 — 2 but thesig-
nificant advantage is the computations can be done in place
since each butterfly combines two elements and places the
results in the same locations.

Figure 7. Example of Fast Transform Compu-
tation of Haar Spectrum in Natural Order

We next consider theinverse of H™.
Theorem 4.2 H" ™' = L. G” where

G" = C'+FE"

n _ 1 0 n—1

e = 1 0]
n _ 2 0 n—1 0 1 n—1
o = [2 0]eete]) 1ee

E° = [1,C" =[] (19)

Proof: From Equations 17 and 19 we have

From the previoustheoremwe know therowsof B" are Haar
functions (with the exception of H?) each with an equal
number of +1's and -1's, so the sum across each row of B"
is0. Hence, B'E" = 0 where 0 denotes the matrix of all
0's.

C" isconstructed as the transpose of B™ with multipliers
applied to certain columns. Hence each column of C* sums
to0,soD"C" = 0 and

D"E" yieldsamatrix with 2" in the top left corner and 0's

everywhere else.

Now

n AN _ 1 0 n—1 0 0 n—1
e = ([Ve |) J]eo)

(L s oo 6 ot]oe)

Multiplying this through, applying the Kronecker mixed
product rule and multiplying the constant matrices we have

0

B"C" = 9

:| ® Bn—lcn—l +
1
-1

0
-2

0
2

:| ® Bn—lEn—l +

:| ® Dn—lcn—l 4

r 1T 1T 1T 1
OO N OO O

:| ® Dn—lEn—l

Asabove, B 'E"" ! =D""!C""' =00

2 0
0 2

0 0

BC:[0 2

:| ®Bn—1cn—1+ |: :| ®Dn—1En—1
We hypothesize that B"C"is a diagonal matrix witha 0 in
thetop left entry and 2" for every other diagonal entry. Itis
readily verified that thisisthe case for n = 1. Assuming, it
istruefor n — 1 and substitutingwe find it istrue for n since
D"~ 'E"~! isamatrix with 27~ in the top left corner and

0'selsewhere. Substitutingthisresult back wefindH” G" =
271" and the theorem is proven. O

Figure 8 illustrates the fast reverse transform procedure
for n = 3. Asinthe sequency case, avalue which passes
through a phase without going through a“ butterfly” must be
multiplied by 2.

3 4 0
-1 -2 8
0 0 8
1 2 0
1 / \ 2 0
0 0 0
-1 -2 0
-1 -2 8

Figure 8. Example of Fast Transform Compu-
tation of Inverse Haar Transform in Natural
Order

5 Relationships Amongst the Transforms

Since each of thetransformsdiscussed has aninverseitis
clearly possible to create a transform from one spectra do-
main to another in the worst case by simply passing through
the Boolean functional domain. The issue is of course can
such a transformation be done more efficiently.

For example, as identified in [16], if Sis the arithmetic
spectrum of afunction, its Wal sh spectrum R in R-encoding
isgivenby R = W"(A")~!S. (A")~!S transforms the
arithmetic spectrum to the functional domain after which
the multiplication by W" yields the Walsh spectrum. It is
more efficient of course to treat W™ (A™)~! asasingle ma-
trix which we can write as

i=1 i=1
By the properties of the Kronecker product this can be writ-
ten as .
QRw! (A~
i=1

So the transform from the arithmetic to the Walsh domain
can be accomplished using the transform matrix

e-g[i]

which can be used asthe basisfor afast transform approach.
Thisisillustratedfor n = 3 in Figure 9. Followingasimilar

The dark lines indicate multiplication by 2.

Figure 9. Example of Direct Fast Transform
from the Arithmetic to Walsh Spectrum

approach, we can show that

r-r (S)

isadirect transform from the Walsh to the arithmetic spec-
tral domain.

Transforming to and from the Haar domain is also pos-
sible. We here consider Walsh to Haar and Haar to Walsh
transforms. arithmetic to Haar and Haar to arithmetic trans-
forms can be developed in a similar fashion.

Theorem 5.1 The Walsh-Hadamard spectrum of a function
can be transformed to the natural order Haar spectrum us-
ing the transform

T = (P Q)
Pn — |:1 _}:|®Pn—1+|:8 g:|®Qn—1
Qn — |:§ 8:|®Qn—1

PY = 0] Q=[]

Proof: We need to transform from the Wal sh to the function
domain and then to the Haar domain. The transform isthus

given by
2n
Employing Equation 17 we have

1 1

By substitution and applying the Kronecker mixed product
rule we have
o = o 1]
0
- [1 2]

n n __ 11 1 1 n—1 n—1
DW_[OO][]@D W

= O

1 1 n—1lyzn—1

) _1]®B W
1
1

o O

_} :| ® Dn—lwn—l
and

1 -1
Defining P* = B"W” and Q" = D"W" we have

L T 0 0
P—[1

1 o e
_1]®P 1+[0 2]®Q !
and 5 0
Qn:|:0 0:|®Qn—1

d

Substitution shows P” = [0] and Q° = [1] and the theorem
is proven. O

Theorem 5.2 The natural order Haar spectrum of a func-
tion can be transformed to the Wal sh-Hadamard spectrum
using the transform

T = (P +QY)
Pn — |:§ _§:|®Pn—1+|:8 g:|®Qn—1
Qn — |: g 8 :| ®Qn—1

P = [0] Q"=[1]

Proof: The proof isanalogousto the proof of Theorem 5.1.
O

These two theorems are the basis for fast transform pro-
cedures asillustrated in Figures 10 and 11. Note that while
the structure of the transform is the same in each case, the
butterfliesin the Haar to Walsh direction are all scaled by a
factor of 2. The structure is similar to the Walsh butterfly
diagram presented earlier except the first butterfly in each
group is replaced by the straight through passage of the two
data values scaled by 2.

The above approach of combining transformsto go from
one spectral domain to another can not be used when the
Reed-Muller is involved because it is carried out over
G'F(2) while the others are carried out over the integers.
However, it was shown in [16] that the Reed-Muller spec-
tral coefficients can be found by taking the modulo-2 of the
absolute values of the arithmetic coefficients, aresult that is
not unexpected given the similar nature of thetwo transform

Figure 10. Example of Fast Transform from
Walsh to Haar Speatrum

3 6 12 24
-1 -2

0 0 N

1 2 /\

1 2

0 0

-1 -2 \/

Figure 11. Example of Fast Transform from
Haar to Walsh Spectrum

matrices. Hence, itispossibleto expressthetransformfrom
a domain to the Reed-Muller domain as a matrix multipli-
cation followed by the taking of the modulo-2 of the abso-
lute values of the result. For the domains considered here,
thematrix multiplication can beimplemented asafast trans-
form.

6 Decision Diagram I mplementation

Reduced ordered binary decision diagrams (ROBDD) [6]
are now a widely used data structure in many applications
including VLSl CAD. Many extensions to the basic idea
have been introduced including multi-terminal binary deci-
sion diagrams (MTBDD)[7] and edge-valued binary deci-
siondiagrams(EVBDD) [17]. (MTBDDsareaso called Al-
gebraic DDs (ADDs) [2].) We assume the reader is famil-
iar with decision diagrams and refer anyone who is not to
the extensive literature on the subject. Interms of notation,
each nonterminal vertex v islabeled with avariable from X

denoted index(v) and has two outgoing edges denoted as
low(v) and high(v). Each terminal vertex v islabeled by a
value(v) from T and has no outgoing edges, hence no suc-
cessors. For an ROBDD, T contains 0 and 1 while for an
MTBDD, T contains a set of integer values. An EVBDD
has factors on certain edges and reduces the complexity of
an MTBDD. Details can be foundin [17].

Itisinsightful to present the fast DD transformation tech-
nique by first considering the case of transformations over
trees. Although this is impractical for implementation, it
doesallow for the basis of the method to be easily explained.
Unlikethe BDD representation, atree representationiscom-
plete and consists of 2 — 1 non-terminal vertices and 2"
terminal vertices.

In terms of graph operations, the one-variable Walsh
transform replaces the subtree low(v) with a subtree repre-
senting the sum of the original subtrees{ow(v) and high(v)
and correspondingly replaces the subtree high(v) with a
subtree representing the difference of the origina subtree
low(v) minusthe subtree high(v). Thisis the butterfly op-
eration for the Wal sh transform.

In terms of implementation, computing the sum (or dif-
ference) of two MTBDDs s typically performed as arecur-
sive procedure similar to the classic i t e operation used in
most BDD package implementations [5].

The order of transformation of the tree isimportant. Ini-
tially, transforming the terminal vertices to the integers +1
allows for the non-terminal nodes at the bottom of the tree
to be transformed. By successively applying the transfor-
mations in a bottom-up manner, the tree representing the
Boolean function is transformed to a tree representing the
Walsh spectrum in Hadamard order from left to right. Fig-
ure 16 illustrates this procedure. The vertices drawn with
dashed lines indicate portions of the graph that have under-
gone the transformation.

Thistechniquecan be stated inasuccinct form as adepth-
first algorithmas givenin Figure 12 where Value() isafunc-
tion which returns the value of a terminal node, Label() is
a function which returns the label of a nonterminal node,
and New_Terminal() and New_Nonterminal are procedures
which produce new nodes of the specified types.

The tree-based al gorithm offers no computational advan-
tage over the direct computation of the spectrum using ma-
trix algebra since the size of the tree is exponentia in the
number of dependent functionvariables. Inorder to take ad-
vantage of shared topological isomorphic subgraphs as are
found in reduced DD structures, the tree-based algorithm
must be modified to account for the case when non-terminal
variables are present along a path without subsequent val-
ued level indices. This case never occursin atree but often
does occur in a reduced DD. As an example, consider the
case Wwherethefunction f = T, T3 + x2T3+ 21 Tox3 iStobe
transformed to the Walsh domain. Figure 13 contains a di-

WAl sh_Tree_Transform (f)
if(f is atermnal) return
Wl sh_Tree_Transf orn{Lowf))
Wl sh_Tree_Transf or n{ Hi gh(f))
low tenp = Tree_Add(Low(f), H gh(f))
H gh(f) = Tree_Sub(Low(f), Hi gh(f))
Low(f) = low_ tenp

Tree_Add(g, h)
if(gis a termnal)
return(New_Terni nal (Val ue(g) +Val ue(h))
ret urn(New_Nont er m nal (Label (g),
Tree_Add(Low(g), Low(h)),
Tree_Add(H gh(g), High(h))))

Tree_Sub(g, h)
if(gis a termnal)
return(New_Terni nal (Val ue(g)- Val ue(h))
ret urn(New_Nont er m nal (Label (g),
Tree_Sub(Low(g), Low(h)),
Tree_Sub(Hi gh(g), H gh(h))))

Figure 12. Pseudo-code for Tree-based Walsh
Transformation

agram representing the reduced BDD of this function with
varidbleorder 1 < z2 < z3. Asiseasily seen, the path
specified by #; = 0 and x5 = 0 skipsthe intermediate vari-
able z5. However, in transforming the non-terminal vertex
x1, the absence of a vertex representing variable z» cannot
be ignored and must be inherently considered.

An absent vertex is in effect a vertex v with low(v) =
high(v). Applying the Walsh butterfly to such a vertex re-
placesthesubtreel/ow(v) by that subtree multiplied by 2 and
the subtree high(v) by the terminal value 0. Based on this
observation the algorithm for transforming a BDD is given
in Figure 14 where for ease of explanation we assume the
labels of the nonterminalsare ordered increasingly from the
root of the BDD towards the terminals and Label() applied
to aterminal yields a maximum value. Twice() doublesthe
terminal values of the argument BDD an operation whichis
easily accomplished if EVBDD are used.

The approach illustrated in Figure 14 for the Walsh case
can be applied to the other transforms described above. The
major complication is to identify when butterflys should or
should not be applied. For example, the case for the tree-
based computation of Haar spectraisaddressed in Figure 15.

7 Concluding Remarks

Direct transformation amongst the Walsh, Haar, Arith-
metic and Reed-Muller spectral domains has been consid-

Figure 13. Reduced BDD for the Example
Function

ered. It has been shown that fast transform techniques
are possible with the exception of transformation from the
Reed-Muller domain. Implementation using decision dia-
gram methods has been outlined.

Current work involves devel oping efficient generic uni-
versal program code for transforming from one domain to
another. We are also considering how the transforms pre-
sented can be used to map spectral conditions, e.g. symme-
try conditions, from one domain to another.

References

[1] N.AhmedandK. R. Rao. Orthogonal Transformsfor Digital
Sgnal Processing. Springer-Verlag, New York, New York,
1975.

[2] R.I.Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii,
A. Pardo, and F. Somenzi. Algebraic decision diagramsand
their application. In Int'l Conf. on CAD, pages 188-191,
1993.

[3] K.G. Beauchamp. Applicationsof Walsh and Related Func-
tions. Academic Press, 1984.

[4] P W.Besslich. Spectral Techniquesand Fault Detection, (M.
G. Karpovsky, editor). Academic Press Publishers, Boston,
Massachusetts, 1985.

[5] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient imple-
mentation of aBDD package. In Design Automation Conf.,
pages 4045, 1990.

[6] R.E. Bryant. Graph-based algorithms for Boolean function
manipulation. |EEE Trans. on Comp., 35(8):677—691, 1986.

[7] E.Clarke, M. Fujita, P McGeer, K.L. McMillan, J. Yang, and
X. Zhao. Multi termina binary decision diagrams: An effi-
cient data structure for matrix representation. In Int'l Work-
shop on Logic Synth., pages P6a:1-15, 1993.

[8] E.M. Clarke, M. Fujita, and X. Zhao. Hybrid decision dia-
grams- overcoming the limitations of MTBDDs and BMDs.
InInt’l Conf. on CAD, pages 159-163, 1995.

(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

J. W. Cooley and J. W. Tukey. An agorithm for the machine
calculation of complex Fourier series. Math. Computation,
19:297-301, 1965.

A. Graham. Kronecker Productsand Matrix Calculus: with
Applications. Ellis Horwood Limited and John Wiley &
Sons, New York, 1981.

A. Haar. Zur Theorie der orthogonalen Funktionensysteme.
Math. Ann., 69:331-371, 1910.

K. D. Heidtmann. Arithmetic spectrum applied to fault de-
tection for combinational networks. |EEE Trans. on Comp.,
40(3), 1991.

S. L. Hurst. The Logical Processing of Digital Sgnals.
Crane-Russack, New York, 1978.

S.L. Hurst, D.M.Miller, and J.C.Muzio. Spectral Techniques
in Digital Logic. Academic Press Publishers, 1985.

M. Karpovsky. Finite Orthogonal Seriesin the Design of
Digital Devices. Wiley and JUP, 1976.

S. K. Kumar and M. A. Breuer. Probabilistic aspects of
Boolean switching functions via a new transform. Journal
of the ACM, 28(3):502-520, 1981.

Y.-T. La and S. Sastry. Edge-valued binary decision dia-
gramsfor multi-level hierarchical verification. In Design Au-
tomation Conf., pages 608613, 1992.

D. E. Muller. Application of Boolean algebrato switching
circuit designand error detection. |RE Transactions, 1:6-12,
1954,

H. Rademacher. Einige Satze Uber Reihen von allgemeinen
orthogonal Funktionen. Math. Ann., 87:112-138, 1922.

I.S. Reed. A classof multiple-error-correcting codesand their
decoding scheme. |RE Trans. on Inf. Theory, 3:6-12, 1954.

J. L. Shanks. Computation of the fast Walsh-Fourier trans-
form. |EEE Trans. on Comp., 18:457-459, 1969.

S.B.K. Vrudhula, M. Pedram, and Y.-T. Lai. Edge valued
binary decision diagrams. In T. Sasao and M. Fujita, edi-
tors, Representation of Discrete Functions, pages 109-132.
Kluwer Academic Publisher, 1996.

J. S. Wallis. Hadamard Matrices. (Lecture Notes No. 292),
Springer-Verlag, 1972.

J. L. Walsh. A closed set of normal orthogonal functions.
American Journal of Mathematics, 55:5-24, 1923.

Wl sh_BDD_Tr ansform (f)
if(f is atermnal) return
if(f has already been transforned)
return
Wal sh_BDD_Tr ansf or n{ Low(f))
Wal sh_BDD_Tr ansf or n{ H gh(f))
low tenp = BDD Add(Low(f), H gh(f))

Hi gh(f) = BDD Sub(Low(f), High(f))
Low(f) = low tenp
BDD_Add(g, h)

if(g and h are termnals)
return(New_Term nal (Val ue(g) +Val ue(h))
i f (Label (g)=Label (h))
ret ur n(New_Nont er m nal (Label (g),
BDD_Add(Low(g), Low(h)),
BDD_Add(H gh(g), High(h))))
el se if(Label (g)<Label (h))
ret urn(New_Nont er m nal (Label (g),
BDD_Add(Low(g), Twi ce(h)),
H gh(9))
el se return(New_Nonterni nal (Label (h),
BDD_Add(Low(h), twice(g)),
H gh(h))

BDD_Sub(g, h)
if(g and h are termnals)
return(New_Term nal (Val ue(g) - Val ue(h))
i f (Label (g)=Label (h))
ret urn(New_Nont er m nal (Label (g),
BDD_Sub(Low(g), Lowm(H)),
BDD_Sub(H gh(g), High(h))))
el se if(Label (g)<Label (h))
ret ur n(New_Nont er m nal (Label (g),
BDD_Sub(Low(g), Twi ce(h)),
H gh(9))
el se return(New_Nonterni nal (Label (h),
BDD_Sub(Low(h), Twi ce(qg)),
H gh(h))

Figure 14. Pseudo-code for BDD-based Walsh
Transformation

Haar _Tree_Transform (f)
if(f is aternminal) return
Haar _Tree_Transform Low(f))
Haar _Tree_Transfornm(H gh(f))
[ow_branch = Low(f)
whi | e(l ow_branch not a terninal)
| ow_branch = Low(| ow _branch)
hi gh_branch = Hi gh(f)
whi | e(hi gh_branch not a termnal)
hi gh_branch = Low(hi gh_branch)
t enp_val ue = Val ue(l ow_br anch) +Val ue(hi gh_br anch)
Val ue(hi gh_branch) = Val ue(l ow_branch) - Val ue(hi gh_br anch)
Val ue(| ow_branch) = tenp_val ue

Figure 15. Pseudo-code for the Tree-based
Haar Transformation

Figure 16. Example of a Tree-based Walsh
Transformation

