
Spectral Techniques for Reversible Logic Synthesis
 D. Michael Miller Gerhard W. Dueck

 Department of Computer Science Faculty of Computer Science
 University of Victoria University of New Brunswick
 Victoria, BC, Canada V8w 3P6 Fredericton, NB, Canada E3B 5A3
 mmiller@csr.uvic.ca gdueck@unb.ca

ABSTRACT
Reversible circuits can lead to low-power CMOS
implementations and are also of interest in optical and quantum
computing. In this paper, we consider the synthesis of reversible
logic assuming a generalized Toffoli gate. We make use of
Rademacher-Walsh spectral techniques and in particular a
spectral measure of function complexity used as a metric in
guiding the search for a solution. The synthesis procedure
introduced develops the circuit from inputs to outputs and from
outputs to inputs simultaneously taking advantage of the best
translation available at each step. No backtracking or look-
ahead is used. Preliminary results are given for reversible and
nonreversible functions together with several ideas for future
work.

1. INTRODUCTION

A digital circuit is reversible if it maps each input pattern to a
unique output pattern. Landauer [9] proved that traditional
irreversible gates lead to power dissipation in a circuit regardless
of its implementation. Bennett [1] showed that for power not to
be dissipated it is necessary that the circuit be build from
reversible gates. Reversible circuits are of interest because of
their potential application in low-power CMOS design, quantum
computation [12] and optical computing.

Here we consider the synthesis of a reversible circuit as a
composition of reversible logic gates. We do not elaborate on
technology issues but do make the following assumptions:

(i) fan-out is not permitted;

(ii) loops are not permitted; and

(ii) permutation of connections between gates is permitted.

We assume a generalized Toffoli gate which encompasses the
NOT, Feynman [4], and 3*3 and 4*4 Toffoli [19] gates. Fredkin
[5] gates are not handled explicitly but can be identified as a pair
of identical Feynman gates with an appropriate intervening
Toffoli gate. The work presented here is an extension to the work
presented by the first author in [13].

Synthesis of reversible logic is significantly different from
conventional logic synthesis. Since loops are not permitted, a
reversible logic circuit can be specified as a simple sequence of

gates. Further since fan-out is not permitted, and assuming an
appropriate technology, a reversible logic circuit can realize the
inverse specification simply by applying the gates in the reverse
order. Hence, synthesis can be carried out from the inputs
toward the outputs or from the outputs toward the inputs. The
method presented here synthesizes the circuit by working in both
directions simultaneously, a significant improvement to the
method in [13] which worked only from the outputs toward the
inputs. In addition, as will be shown by example, it is
advantageous to synthesize a circuit for a given reversible
specification and also for the inverse specification taking the
solution to be the simpler of the two results.

The paper is organized as follows. Section 2 provides the
necessary background on reversible logic, the Researcher-Walsh
spectral domain, and the spectral measure of function complexity
used in this work. Section 3 describes output and input
translation and presents the synthesis method. Reversible and
irreversible examples are presented in Sections 4 and 5,
respectively. The paper concludes with observations and
suggestions for further work in Section 6.

2. PRELIMINARIES

2.1 Reversible Logic Gates

A reversible logic gate is a k-input, k-output (denoted k*k) device
that maps each possible input pattern to a unique output pattern.
For the gates considered, not only is the circuit reversible, the
forward and reverse mappings are identical. Many reversible
logic gates have been studied in the literature [2][4][5]
[8][10][15][19]. Table 1 defines the reversible gates commonly
considered in the literature.

The bi-directional nature of these gates is emphasized by using
conventional quantum logic notation [14] where the same labels
are used on both sides of the gate. We use + to denote the
transformed side rather than a prime as often used in the
literature in order to avoid any confusion with complementation.

One can readily verify each of these gates is reversible. Feynman
and 3*3 Toffoli gates transform a single variable while the
Fredkin gate transform a pair of outputs.

 2

Gate Type Functionality Gate Notation

1*1 Not x x+ = NOT(x)

2*2 Feynman [4] x x
y x y

+

+
=
= ⊕

FEY(x,y)

3*3 Toffoli [19] x x
y y
z xy z

+

+

+

=
=
= ⊕

TOF3(x,y,z)

3*3 Fredkin [5] x x
y xy xz
z xz xy

+

+

+

=
= ⊕
= ⊕

FRE(x,y,z)

Table 1: Reversible Logic Gates.

The obvious transformations apply regarding NOT and FEY.
Further:

 FRE(, ,) FEY(,)TOF3(, ,)FEY(,)x y z y z x z y y z= (1)

from which it follows that

 TOF3(, ,) FEY(,)FRE(, ,)FEY(,)x y z z y x z y z y= (2)

The Toffoli gate can be generalized to the *n n case in the
obvious way giving

1 2 1

1 2 1

(, ,..., ,)

, ...

n

i ni

TOFn x x x y

x x y x x x y

−

+ +
−= = ⊕

 (3)

From Table 1, we can see a Feynman gate is a TOF2 and a NOT
gate can be interpreted as a TOF1 by treating the AND of an
empty set of variables as 1 and recalling 1 x x⊕ = . Equation
(1) shows a Fredkin gate can be realized as a sequence of three
generalized Toffoli gates. Hence we shall concentrate on the use
of generalized TOFn gates in our synthesis method.

Note that higher order Toffoli gates can be expressed as
combinations of Toffoli gates with fewer inputs by introducing
constant inputs. For example,

 TOF4(, , ,) TOF3(, ,) TOF3(, ,)w x y z w x e y e z= (4)

where e is constant 0 as input to the left TOF3.

We assume complementation is internal to the generalized
Toffoli gate and will for example write TOF3(a',b',c) to mean
c a b c+ ′ ′= ⊕ with a and b unaffected as they pass through the
gate. Our synthesis procedure does identify some
complementations which can not be absorbed into other gates.
These we shall write as TOF1 gates.

2.2 Rademacher-Walsh Spectral Domain

A completely-specified Boolean function 2 1(,..., ,)nf x x x is
defined by a column vector of 2n 0’s and 1’s denoted .F The
Rademacher-Walsh spectrum [6] of the function is given by

 n=R T F (5)

where the transform matrix nT is a Hadamard matrix defined as

[]0

1 1

1 1

1
p p

p
p p

− −

− −

=

 = −

T

T T
T

T T

 (6)

Taking +1 as logic 0 and –1 as logic 1, each row of the transform
matrix can be seen to correspond to the truth vector of the
exclusive-OR (EXOR) of a subset of 1 2, ... nx x x . Each spectral
coefficient thus measures the correlation of F to a particular
EXOR function and the spectral coefficients are identified by
subscripts indicating the variables involved, e.g. for 3n = ,

 0 1 2 1,2 3 1,3 2,3 1,2,3r r r r r r r r = R (7)

0r denotes the EXOR of no variables, i.e. the constant 0 function
and can be seen to simply count the number of 1’s in .F All the
other coefficients take values in the range 12n−− denoting
perfect agreement with the corresponding EXOR function and

12n−+ denoting perfect agreement with the complement of that
EXOR function.

The coefficients 1 2, ,..., nr r r are termed the first-order
coefficients. Each measures correlation to a single variable.
These are of particular importance to our method.

Consider two functions, f and g with spectra fR and g,R
respectively. Boolean operations can be performed directly in the
spectral domain [6] as shown in Table 1.

NOT f f f f
0 02 ; 0n

v vr r r r v= − = − ∀ ≠

AND
2 1

gfg f

0

n

v v v u
u

r r r v
−

⊕
=

= × ∀∑ (v u⊕ is bit-wise ⊕)

OR f g f g fg+ = + −R R R R

EXOR f g f g fg2⊕ = + −R R R R

Table 2: Logic Computations in the Spectral Domain.

2.3 Function Complexity

One simple measure of function complexity is a count of the
number of adjacent 0’s and adjacent 1’s on its Karnaugh map [7].
It has been shown [6], that this count is given by

 3

 ()
2 1

2
2

0

1 1
2

2 2

n

n
vn

v
C f n v

−

−
=

 = −
∑ r (8)

where v is the number of 1’s in the binary expansion of .v

(),Z R the number of zero coefficients in ,R is a simple
measure of the complexity of the spectrum of a function but is
not a direct measure of function complexity since all EXOR
functions, including single variables and their complements, have
2 2n − zero-valued coefficients. However, all such functions
are equivalent under linear translation [6][7], and hence
amenable to implementation using Feynman gates, so ()Z R is
of interest.

In the synthesis procedure described below, we use the
complexity metric

 () () ()2nD f n Z C f= +R (9)

()D f gives a higher value the greater the number of zero-
valued spectral coefficients, and when that measure is equal, to
functions with higher adjacency count. Single variables and their
complements yield the maximum value of ()D f for a given
n although they are not unique in that regard.

3. SYNTHESIS
The synthesis approach presented here is an enhancement to the
method presented by the first author in [13]. In particular, the
earlier method developed the circuit from the outputs towards the
inputs. Here we develop the circuit in both directions.

3.1 Output Translation

An output translation is the application of a TOFn gate across a
set of functions (outputs). In general, this can be expressed as

2 1

TOF (, ,..., ,)
n

n f f f fα α α β−
 (10)

The single output fβ is affected. For example, Table 3 shows
the application of the output translation 0 1 2TOF 3(, ,)f f f which
results in 2 0 1 2f f f f+ = ⊕ .

c b a f0f1f2 c b a f0f1f2+
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 1 0
0 1 1 0 1 1 0 1 1 0 1 1
1 0 0 1 0 0 1 0 0 1 0 0
1 0 1 1 1 0 1 0 1 1 1 1
1 1 0 1 0 1 1 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 0

(a) (b)

Table 3: (a) before translation (b) after output translation.

This simple translation interchanges two output patterns
(emphasized in bold italics). In general, an output
translation will interchange blocks of rows. The

reversibility of the specification is clearly preserved. The
synthesis method in [13] employed only this form of
translation. In our method the translation is performed
directly on the function spectra.

3.2 Input Translation

An input translation is similar but applies to the input side of the
specification. The general form is

1 2 1

TOF (, ,..., ,)
n

n x x x xα α α β−
 (11)

Only input xβ is affected. Table 4 illustrates application of the
input translation TOF2(,)b c resulting in c c b+ = ⊕ .

c b a f0f1f2 c+ b a f0f1f2 c+ b a f0f1f2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0 1
0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0
1 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0
1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1

(a) (b) (c)

Table 4: (a) before translation (b) after input translation
(c) after rearrangement.

Table 4 (c) shows the result after rearranging the input patterns
into standard order. From this we see that an input translation in
fact interchanges blocks of output patterns. In general, as shown,
the movement of output patterns resulting from an input
translation cannot be accomplished by an output translation.
Also note that an input translation will generally affect more than
one output, and often all outputs, whereas an output translation
always affects a single output.

Input translations can be carried out directly in the spectral
domain but except for TOF1 and TOF2, the operations are rather
complex. Our current implementation performs the translation in
the function domain and then transforms the results to spectra.

3.3 Synthesis Method
Given a reversible logic specification expressed as a system of
Boolean functions ()2 1,..., , ,1 ,i nf x x x i n≤ ≤ our method
first transforms each function to the spectral domain giving the
spectra ,1 .i i n≤ ≤R .

The first phase of our method is the iterative application of the
following procedure which for each iteration identifies a single
generalized Toffoli gate and input complementation pattern. The
identified gate corresponds to either an input or an output
translation, whichever is found to be best in terms of improving
the complexity measure D. Computations for output translation
are carried out in the spectral domain using the rules in Table 2.
Computations for input translations require conversion between
the spectral and functional domains.

 4

Procedure

Input: Spectra ,1i i n≤ ≤R .

Output: One generalized Toffoli gate and input permutation
pattern, and transformed spectra ,1i i n+ ≤ ≤R .

Process:

(a) Examine the effect of each input translation and select the
translation (generalized Toffoli gate and input
complementation pattern) that results in the maximum
positive change in ()iD f summed across all the output
functions with no negative change to any ()iD f . In the case
of a tie, choose the one with fewest gate inputs and if there is
more than one with maximum positive change and the same
number of inputs, choose the one with the minimum number
of input complementations. If there is still a tie, the first
encountered is arbitrarily chosen. Note that complementation
of the variable affected by a Toffoli gate is never considered.

(b) Examine the effect of each available output translation and
select the translation (generalized Toffoli gate and input
complementation pattern) that results in the maximum
positive change in ()iD f for the single output function
affected by the translation. Ties are resolved in the same
manner as for input translations. Note that output translations
are not considered that would affect an output that has
already been translated to a single variable or its complement.
Once again, complementation of the variable affected by the
Toffoli gate is not considered.

(c) If neither (a) or (b) identifies a translation, the procedure
terminates in error. Otherwise choose the translation from (a)
or (b) that results in the greatest improvement. In the case of
a tie, the input translation is chosen.

(d) If an output translation is chosen in (c), jj
+ =R R , j i≠ ,

where if is the output affected by the selected gate. i
+R is

computed based on the chosen translation directly in the
spectral domain.

(e) If an input translation is chosen in (c), each of the iR is
transformed to the functional domain, the functional
specifications are rearranged according to the input
translation, and the i

+R are then found by transforming the
permuted functional specifications.

The synthesis process is complete when the spectra iR each
represent a unique variable or its complement. At this point we
have an ordered list of possible interleaved input and output
translations, each with an associated generalized Toffoli gate and
input complementation pattern.

In the second phase of our procedure, the circuit is produced as
an ordered sequence of generalized Toffoli gates as follows:

(a) Each output function that has been translated to the
complement of an input variable requires a TOF1 (NOT) gate
as a final output translation.

(b) The output permutation ,1 ,ip i n≤ ≤ is such that
ipx is

the variable, or complemented variable, identified by iR .

(c) The circuit begins with the Toffoli gates from input
translations listed in the order they were identified.

(d) The circuits concludes with the Toffoli gates from output
translations listed in reverse order to the order in which they
were identified. This set of Toffoli gates begins with any
TOF1 gates identified in (a). The variable labels for the
Toffoli gates associated with output translations including the
TOF1 gates are relabeled according to the permutation
identified in (b).

(e) The identified circuit produces the originally specified
outputs in the permutation order identified in (b).

(f) As a final step, Fredkin gates can be inserted by applying (1).
Other optimizations can be applied such as inverter reduction.

The circuit is produced as a sequence of Toffoli gates from the
input side to the output side. Of course, applying the sequence in
reverse transforms the output side to the input side.

The synthesis procedure described here is a significant extension
to the one described in [13] as it uses input translation as well as
output translation. In addition, the procedure has been extended
to generalized Toffoli gates. The work in [13] considered only
up to TOF4 gates. Finally, the procedure described here uses a
different rule for breaking ties. Preference is here given to
maximizing the improvement in the function complexity metric
whereas in [13] preference was given to minimizing the gate
width. Experimentation has shown the scheme used here in
general yields better results.

4. REVERSIBLE EXAMPLES

For each example, the specification is given as an ordered set of
decimal numbers which define the truth table specification of the
reversible logic problem to be realized. To illustrate, the
specification for Example 1 defines a Fredkin gate as specified in
Table 5. The circuit is given as an ordered sequence of reversible
gates. Read from left to right they transform the left side of the
specification to the right side. The output permutation is not
noted if it is the identity.

Example 1: Verification of realizing a Fredkin gate using two
Feynman gates and a Toffoli gate.

Specification: [0,1,2,3,4,6,5,7] (corresponds to Table 5)

Circuit: TOF2(b,a) TOF3(c,a,b) TOF2(b,a)

 5

c b a c+ b+ a+
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

Table 5 Fredkin Gate Specification.

Example 2: This is a second example of the interchange of two
positions in the specification. Note the analogous structure to
that of the Fredkin gate realization – the right pair of TOF2 gates
can be reversed to better show the expected symmetry. The
circuit given by our method is identical to a solution provided by
Perkowski [16].

Specification: [0,1,2,4,3,5,6,7]
Circuit: TOF2(c,b) TOF2(c,a) TOF3(b,a,c) TOF2(c,b)
TOF2(c,a)

Example 3: The four input extension of Example 2. The right
three TOF2 gates can be permuted to better show the symmetry.

Specification: [0,1,2,3,4,5,6,8,7,9,10,11,12,13,14,15]
Circuit: TOF2(d,c) TOF2(d,b) TOF2(d,a) TOF4(c,b,a,d)
TOF2(d,c) TOF2(d,b) TOF2(d,a)

Example 4: This is increment mod2n for 3.n =

Specification: [1,2,3,4,5,6,7,0]
Circuit: TOF3(b,a,c) TOF2(a,b) TOF1(a)

Example 5: This is the 4 input extension of Example 4. Note the
generalization to the structure of the solution for the 3n =
case. The structure generalizes in the same manner for higher
values of n.

Specification: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0]
Circuit: TOF4(c,b,a,d) TOF3(b,a,c) TOF2(a,b) TOF1(a)

Example 6: This example is taken from [17].

Specification: [3,11,2,10,0,7,1,6,15,8,14,9,13,5,12,4]

Circuit: TOF1(c) TOF1(b) TOF2(a,d) TOF2(c,d) TOF3(a',d,c)
TOF2(c,d) TOF2(c,a) TOF3(a',d',b)

The three underlined gates in the above solution can be replaced
with the single Fredkin gate FRE(a',c,d). The outputs of the
circuit are the permuted order (c,a,d,b). Note that (d,c,b,a) is the
standard unpermuted order. The solution is comparable to the
solution given in [17].

Example 7: This is the inverse to the specification in Example 6.
This shows the importance of applying our synthesis method to
both a specification and the corresponding inverse (except when
the specification is self-inverse) and choosing the better of the
results.

Specification: [4,6,2,0,15,13,7,5,9,11,3,1,14,12,10,8]

Circuit: TOF3(c',b',a) TOF2(c,b) TOF2(c,d) TOF1(b)
TOF1(a) TOF3(b,d,c) TOF2(c,b)

In this case, the output permutation is (c,b,a,d).

Comparing the solution for Examples 6 and 7 shows the
importance of applying the synthesis method to a problem and its
inverse. The resulting circuit can be quite different. One can of
course choose between the solution to a problem or its inverse,
since reading a solution in reverse gives a circuit for the inverse
problem due to the reversibility of the gates. For example,
reading the solution for example 6 from right to left is a solution
for Example 7, and reading the solution for Example 7 from right
to left is a solution for Example 6.

5. IRREVERSIBLE EXAMPLES

An arbitrary combinational circuit composed of irreversible gates
can be mapped to a reversible circuit typically with the addition
of some number of constant inputs and ‘garbage’ outputs [14].
Here our interest is to synthesize a reversible circuit from an
irreversible specification and not the transformation of a
irreversible circuit to a reversible one. To apply our synthesis
method, an irreversible specification must first be transformed to
a reversible one. We assume the given specification is totally-
specified.

5.1 Single-Output Functions

A single-output function f involving input variables
1 2, ,..., nx x x is transformed to a specification with 1n + inputs

and 1n + outputs by:

i) adding a new input variable 1nx + ,

ii) replacing the output f by 1nf x +⊕ ,

iii) adding n outputs each equal to one of the original inputs
1 2, ,..., nx x x .

It is easily verified that the specification constructed in this way
assigns a unique output pattern to each input pattern and is
therefore reversible. By setting 1 0nx + = on input, the original
output f is realized.

Example 8: This procedure for transforming a single-output
function is illustrated for the simple example of the 2-input AND
function in Table 6. The resulting circuit is the single gate
TOF3(b,a,c) which realizes the AND of a and b when c is 0 on
input.

b a f c b a c+ b+ a+
0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 1
1 0 0 0 1 0 0 1 0
1 1 1 0 1 1 1 1 1
 1 0 0 1 0 0
 1 0 1 1 0 1
 1 1 0 1 1 0
 1 1 1 0 1 1

 (a) (b)

Table 6: (a) 2-input AND (b) reversible specification
derived from 2-input AND.

 6

Example 9: The two of five checker function has five inputs and
a single output which is 1 if, and only if, two of the inputs are 1.
Transforming this function to a reversible specification as
described above and then applying our synthesis procedure yields
the circuit:

TOF3(b',a',f) TOF4(d',c',a,f) TOF4(e',c',b',f)
TOF6(e,d',c',b,a,f) TOF6(e',d',c,b',a,f) TOF6(e',d,c',b,a',f)
TOF6(e,d,c,b',a',f) TOF5(e',d',c,a',f) TOF5(e,d',c',a',f)

with output permutation (f,e,d,c,b,a). Variable f is the desired
output and should be set to 0 on input. This solution uses two
more Toffoli gates than the solution found by Dueck and Maslov
[3]. Their algorithm uses exhaustive evaluation at each stage
including two-step look-ahead to choose the best generalized
Toffoli gate.

Example 10: To illustrate this process is equally effective for a
non-symmetric function, consider the 5-input, single output
function which is 1 for the five input patterns e'd'c'b'a, e'd'c'ba,
e'd'cba, e'dcba and edcba. Our approach identifies the simple
circuit

TOF6(e,d,c,b,a,f) TOF5(e',c,b,a,f) TOF5(e',d',c',a,f)

where again variable f is the desired output and should be set to 0
on input.

5.2 Multiple-Output Functions

The approach described above or an extension to it is applied for
multiple-output functions. In this case, the number of outputs to
be added is at least 2log m where m is the maximum number
of times a single output pattern appears in the given specification
[11]. Additional outputs and also additional inputs may be
required to ensure the derived specification has the same number
of inputs and outputs, a requirement for it to be reversible. The
transformation of the given specification must be done in such a
way as to yield a reversible specification without introducing
undue complexity.

Example 11: Table 7 is a reversible specification derived from a
full adder specification shown in bold italics. Two outputs must
be added, as the output patterns 01 and 10 each appear 3 times in
the specification of the full adder.

The resulting circuit is

TOF2(b,c) TOF2(a,c) TOF1(d) TOF2(c,d) TOF4(c',b',a',d)
TOF4(c,b,a,d)

which can be simplified by replacing TOF1(d) TOF2(c,d) by
TOF2(c',d). Applying our synthesis method to the inverse of the
specification in Table 7, yields the similar complexity circuit:

TOF2(b,c) TOF2(a,c) TOF2(c,d) TOF4(c,b',a',d)
TOF4(c',b,a,d)

d c b a d+ c+ b+ a+
0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1
0 0 1 0 0 1 1 0
0 0 1 1 1 0 1 1
0 1 0 0 0 1 0 0
0 1 0 1 1 0 0 1
0 1 1 0 1 0 1 0
0 1 1 1 1 1 1 1
1 0 0 0 1 0 0 0
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 0
1 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
1 1 0 1 0 0 0 1
1 1 1 0 0 0 1 0
1 1 1 1 0 1 1 1

Table 7: Reversible specification derived from the
full adder (bold italics).

The simpler circuit

TOF2(b,a) TOF2(a,c) TOF3(c,a,d) TOF3(b',a',d) TOF1(d)

is found by changing the specification in Table 7 so that
a a b+ = ⊕ . This definition for a+ is taking into account that
a b⊕ is a useful subfunction in the realization of the sum and
carry functions of the full adder. Knowledge of the
decomposition structure of the target functions is of considerable
benefit in choosing a reversible specification.

Applying our synthesis approach to the inverse of the latter
specification yields:

TOF2(a,c) TOF2(b,a) TOF2(c,d) TOF4(c,b',a',d)
TOF4(c',b,a,d)

which is more complex. This latter circuit is interesting to
compare to the circuit found from considering the inverse of the
original specification in Table 7.

Example 11: As a final example we consider the benchmark
function RD53. This function has 5 inputs and 3 outputs. The
outputs are the binary encoding of the weight of the input pattern
i.e. the number of 1's in the input pattern. For example, input
00000 yields output 000, input 00100 yields output 001 and input
11111 yields output 101.

The maximum output pattern multiplicity is 10 so at least 4
garbage outputs must be added giving a total of at least 7 outputs.
That in turn requires two inputs be added. We thus have a
specification with inputs , , , , , ,g f e d c b a and outputs

, , , , , ,g f e d c b a+ + + + + + + where , , , ,e d c b a are the original
inputs. Let 2 1 0, ,h h h be the original outputs with 2h the most
significant bit of the binary representation of the weight.

A reversible specification can be derived using the principles
outlined above by setting

2 1 0, , ,

, , , .

g h g f h f e h

d e c d b c a b

+ + +

+ + + +

= ⊕ = ⊕ =

= = = =
 (12)

 7

Setting 0g f= = yields the desired outputs. Applying our
synthesis method to this specification yields the circuit

TOF4(e,b,a,g) TOF2(e,a) TOF2(d,a) TOF2(c,a) TOF2(b,a)
TOF1(f) TOF6(a,e',d',c',b,f) TOF6(a',e,d,c',b',f
TOF5(a,e',d',b',f) TOF4(a',e,d,f) TOF2(a,f) TOF6(a',e,d',c,b,f)
TOF6(a,e',d,c',b',f) TOF6(a',e',d,c,b,f) TOF6(a,e,d',c',b',f)
TOF2(a,f) TOF6(a',e',d',c',b',f) TOF6(a,e,d,c,b,
TOF6(a',e',d,c,b,g) TOF6(a,e,d',c',b,g) TOF5(a',e,d,c,g)

with output permutation (g,f,a,e,d,c,b). The underlined TOF1
gate can be removed by replacing the underlined TOF2 gate by
TOF2(a',f).

The sequence TOF2(e,a) TOF2(d,a) TOF2(c,a) TOF2(b,a) in the
above circuit is an indication that parity plays an important role
in RD53. Changing the specification in (12) so that
d e d c b+ = ⊕ ⊕ ⊕ and applying our synthesis procedure
yields a circuit with 15 generalized Toffoli gates. That circuit
shows some further parity dependency. This led us to consider
the following reversible specification:

2 1 0, , ,

, ,

, .

g h g f h f e h

d e d c b c d c b

b c b a b

+ + +

+ +

+ +

= ⊕ = ⊕ =

= ⊕ ⊕ ⊕ = ⊕ ⊕

= ⊕ =

 (13)

Applying our synthesis algorithm yields the circuit

TOF5(e,d,c,a,g) TOF2(b,c) TOF2(c,d) TOF2(d,e) TOF2(e,a)
TOF3(e,a,f) TOF3(c',b,f) TOF3(d',c,f) TOF3(e',d',f) TOF1(f)
TOF5(a',e,d',b,g) TOF5(a',d,c',b,g)

with output permutation (g,f,a,e,d,c,b). This circuit requires 12
Toffoli gates as opposed to 20 for the initial reversible
specification. Far fewer input complementations are needed and
the width of the required gates is greatly reduced. Note that the
TOF1 gate can be removed by complementing f in (13). This
assumes a constant 1 can be used as an input in the final circuit
implementation. The circuit found by our method in that case
uses 11 Toffoli gates, whereas the method in [3] requires 13
Toffoli gates with higher input counts.

This example clearly shows the benefit of taking properties of the
target functions and an initial circuit realization into account
when constructing and refining the reversible specification.

6. CONCLUSION

Results to date show the spectral-based synthesis method does
indeed have promise. We are currently developing a formal
proof that the method will terminate giving a circuit for any
completely-specified reversible specification.

The preliminary implementation of our synthesis method is in C
and represents functions and their spectra as vectors of length
2n although fast transform methods [6][18] are used in the
implementation rather than the matrix transformation method.

Execution time on a 750 MHz PC is reasonable for the examples
shown, about 3 minutes for RD53. A decision diagram
implementation is under development so the method can be
applied to larger problems. Preliminary work has shown that
input and output translations can be carried out directly on
functional or spectral decision diagrams. In particular, input
translations can be performed as local translations on a decision
diagram provided the variables involved are adjacent.

While our synthesis method does not require extensive look-
ahead or back-tracking techniques, it does require the full
consideration of the possible Toffoli gates and input
complementation patterns at each stage of the synthesis. We are
currently investigating spectral criteria to reduce this searching.

Lastly, we are examining how to formalize the transformation of
a nonreversible specification to a reversible one. In particular,
we are examining how spectral criteria that may aid this process.

REFERENCES
[1] Bennett, C., “Logical Reversibility of Computation,” IBM Jour. of

Research and Development, 17, 1973, pp. 525-532.
[2] De Vos, A., “Towards Reversible Digital Computers,” Proc.

European Conf. Circuit Theory & Design, 1997, pp. 923-931.
[3] Dueck, G. W., and D. Maslov, “Reversible Function Synthesis with

Minimum Garbage Outputs,” submitted to RM-2003.
[4] Feynman, R., “Quantum Mechanical Computers,” Optics News,11,

1985, pp. 11-20.
[5] Fredkin, E., and T. Toffoli, “Conservative Logic,” International

Jour. Theoretical Physics, 1982, pp. 219-253.
[6] Hurst, S. L., D. M. Miller, and J. C. Muzio, Spectral Techniques in

Digital Logic, Academic Press, 1985.
[7] Karpovsky, M. G., Finite Orthogonal Series in the Design of Digital

Devices, John Wiley and Sons, 1976.
[8] Kerntopf, P., “On Efficiency of Reversible Logic (3,3) Gates,”

Proc. 7th Intl. Conf. MIXDES, 2000, pp. 185-190.
[9] Landauer, R., “Irreversibility and Heat Generation in the

Computational Process,” IBM Journal of Research and
Development, 5, 1961, pp. 183-191.

[10] Margolus, N., Physics and Computation, Ph. D. Thesis,
Massachusetts Institute of Technology, 1988.

[11] Maslov, D., and G. W. Dueck, “Garbage in Reversible Designs of
Multiple-Output Functions,” submitted to RM-2003.

[12] Milburn, Gerard J., The Feynman Processor, Perseus Books, 1998.
[13] Miller, D. M., “Spectral and Two-Place Decomposition Techniques

in Reversible Logic,” Proc. Midwest Symposium on Circuits and
Systems, on CD-ROM, August 2002.

[14] Nielsen, M. A., and I. L. Chuang, Quantum Computation and
Quantum Information, Cambridge Univ. Press, 2000.

[15] Peres, A., “Reversible Logic and Quantum Computers,” Physical
Review A, 32, 1985, pp. 3266-3276.

[16] Perkowski, M. Private communication.
[17] Perkowski, M., et al., “A General Decomposition for Reversible

Logic,” Proc. Fifth Reed-Muller Workshop, 2001, pp. 119-138.
[18] Thornton, M. A., R. Drechsler and D. M. Miller, Spectral

Techniques in VLSI CAD, Kluwer, 2002.
[19] Toffoli, T., “Reversible Computing,” in Automata, Languages and

Programming, Springer-Verlag, pp. 632-644, 1980.

Acknowledgements: This work was supported in part by research grants
from the Natural Sciences and Engineering Research Council of Canada.
This work was completed while the first author was on sabbatical at the
University of New Brunswick.

