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ABSTRACT 
Reversible circuits can lead to low-power CMOS 
implementations and are also of interest in optical and quantum 
computing. In this paper, we consider the synthesis of reversible 
logic assuming a generalized Toffoli gate. We make use of 
Rademacher-Walsh spectral techniques and in particular a 
spectral measure of function complexity used as a metric in 
guiding the search for a solution. The synthesis procedure 
introduced develops the circuit from inputs to outputs and from 
outputs to inputs simultaneously taking advantage of the best 
translation available at each step.  No backtracking or look-
ahead is used. Preliminary results are given for reversible and 
nonreversible functions together with several ideas for future 
work. 

1. INTRODUCTION 

A digital circuit is reversible if it maps each input pattern to a 
unique output pattern.  Landauer [9] proved that traditional 
irreversible gates lead to power dissipation in a circuit regardless 
of its implementation.  Bennett [1] showed that for power not to 
be dissipated it is necessary that the circuit be build from 
reversible gates.  Reversible circuits are of interest because of 
their potential application in low-power CMOS design, quantum 
computation [12] and optical computing.   

Here we consider the synthesis of a reversible circuit as a 
composition of reversible logic gates.  We do not elaborate on 
technology issues but do make the following assumptions:  

(i) fan-out is not permitted;  

(ii)  loops are not permitted; and  

(ii) permutation of connections between gates is permitted.  

We assume a generalized Toffoli gate which encompasses the 
NOT, Feynman [4], and 3*3 and 4*4 Toffoli [19] gates.  Fredkin 
[5] gates are not handled explicitly but can be identified as a pair 
of identical Feynman gates with an appropriate intervening 
Toffoli gate. The work presented here is an extension to the work 
presented by the first author in [13]. 

Synthesis of reversible logic is significantly different from 
conventional logic synthesis. Since loops are not permitted, a 
reversible logic circuit can be specified as a simple sequence of 

gates. Further since fan-out is not permitted, and assuming an 
appropriate technology, a reversible logic circuit can realize the 
inverse specification simply by applying the gates in the reverse 
order.  Hence, synthesis can be carried out from the inputs 
toward the outputs or from the outputs toward the inputs.  The 
method presented here synthesizes the circuit by working in both 
directions simultaneously, a significant improvement to the 
method in [13] which worked only from the outputs toward the 
inputs.  In addition, as will be shown by example, it is 
advantageous to synthesize a circuit for a given reversible 
specification and also for the inverse specification taking the 
solution to be the simpler of the two results. 

The paper is organized as follows.  Section 2 provides the 
necessary background on reversible logic, the Researcher-Walsh 
spectral domain, and the spectral measure of function complexity 
used in this work.  Section 3 describes output and input 
translation and presents the synthesis method.  Reversible and 
irreversible examples are presented in Sections 4 and 5, 
respectively.  The paper concludes with observations and 
suggestions for further work in Section 6. 

2. PRELIMINARIES 

2.1 Reversible Logic Gates 

A reversible logic gate is a k-input, k-output (denoted k*k) device 
that maps each possible input pattern to a unique output pattern.  
For the gates considered, not only is the circuit reversible, the 
forward and reverse mappings are identical.  Many reversible 
logic gates have been studied in the literature [2][4][5] 
[8][10][15][19]. Table 1 defines the reversible gates commonly 
considered in the literature. 

The bi-directional nature of these gates is emphasized by using 
conventional quantum logic notation [14] where the same labels 
are used on both sides of the gate.  We use + to denote the 
transformed side rather than a prime as often used in the 
literature in order to avoid any confusion with complementation.   

One can readily verify each of these gates is reversible. Feynman 
and 3*3 Toffoli gates transform a single variable while the 
Fredkin gate transform a pair of outputs. 
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Gate Type Functionality Gate Notation 

1*1 Not x x+ =  NOT(x) 

2*2 Feynman [4] x x
y x y

+

+
=
= ⊕

 
FEY(x,y) 

3*3 Toffoli [19] x x
y y
z xy z

+

+

+

=
=
= ⊕

 
TOF3(x,y,z) 

3*3 Fredkin [5] x x
y xy xz
z xz xy

+

+

+

=
= ⊕
= ⊕

 
FRE(x,y,z) 

Table 1: Reversible Logic Gates. 

The obvious transformations apply regarding NOT and FEY.  
Further: 

 FRE( , , ) FEY( , )TOF3( , , )FEY( , )x y z y z x z y y z=  (1) 

from which it follows that 

 TOF3( , , ) FEY( , )FRE( , , )FEY( , )x y z z y x z y z y=  (2) 

The Toffoli gate can be generalized to the *n n case in the 
obvious way giving 

 
1 2 1

1 2 1

( , ,..., , )

, ...

n

i ni

TOFn x x x y

x x y x x x y

−

+ +
−= = ⊕

 (3) 

From Table 1, we can see a Feynman gate is a TOF2 and a NOT 
gate can be interpreted as a TOF1 by treating the AND of an 
empty set of variables as 1 and recalling 1 x x⊕ = .  Equation 
(1) shows a Fredkin gate can be realized as a sequence of three 
generalized Toffoli gates.  Hence we shall concentrate on the use 
of generalized TOFn gates in our synthesis method.   

Note that higher order Toffoli gates can be expressed as 
combinations of Toffoli gates with fewer inputs by introducing 
constant inputs.  For example, 

      TOF4( , , , ) TOF3( , , ) TOF3( , , )w x y z w x e y e z=  (4) 

where e is constant 0 as input to the left TOF3. 

We assume complementation is internal to the generalized 
Toffoli gate and will for example write TOF3(a',b',c) to mean 
c a b c+ ′ ′= ⊕ with a and b unaffected as they pass through the 
gate.  Our synthesis procedure does identify some 
complementations which can not be absorbed into other gates.  
These we shall write as TOF1 gates. 

2.2  Rademacher-Walsh Spectral Domain 

A completely-specified Boolean function 2 1( ,..., , )nf x x x is 
defined by a column vector of 2n 0’s and 1’s denoted .F  The 
Rademacher-Walsh spectrum [6] of the function is given by 

 n=R T F  (5) 

where the transform matrix nT is a Hadamard matrix defined as 

 

[ ]0

1 1

1 1

1
p p

p
p p

− −

− −

=

 
 =  −  

T

T T
T

T T

 (6) 

Taking +1 as logic 0 and –1 as logic 1, each row of the transform 
matrix can be seen to correspond to the truth vector of the 
exclusive-OR (EXOR) of a subset of 1 2, ... nx x x . Each spectral 
coefficient thus measures the correlation of F to a particular 
EXOR function and the spectral coefficients are identified by 
subscripts indicating the variables involved, e.g. for 3n = , 

 0 1 2 1,2 3 1,3 2,3 1,2,3r r r r r r r r =   R  (7) 

0r  denotes the EXOR of no variables, i.e. the constant 0 function 
and can be seen to simply count the number of 1’s in .F  All the 
other coefficients take values in the range 12n−− denoting 
perfect agreement with the corresponding EXOR function and 

12n−+ denoting perfect agreement with the complement of that 
EXOR function. 

The coefficients 1 2, ,..., nr r r are termed the first-order 
coefficients.  Each measures correlation to a single variable.  
These are of particular importance to our method. 

Consider two functions, f and g with spectra fR and g,R  
respectively. Boolean operations can be performed directly in the 
spectral domain [6] as shown in Table 1.   

NOT f f f f
0 02 ; 0n

v vr r r r v= − = − ∀ ≠  

AND
2 1

gfg f

0

n

v v v u
u

r r r v
−

⊕
=

= × ∀∑ (v u⊕ is bit-wise ⊕ ) 

OR f g f g fg+ = + −R R R R  

EXOR f g f g fg2⊕ = + −R R R R  

Table 2: Logic Computations in the Spectral Domain. 

2.3 Function Complexity 

One simple measure of function complexity is a count of the 
number of adjacent 0’s and adjacent 1’s on its Karnaugh map [7].  
It has been shown [6], that this count is given by 
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 ( )
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2
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0
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2
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n

n
vn

v
C f n v

−

−
=

  = −   
∑ r  (8) 

where v is the number of 1’s in the binary expansion of .v   

( ),Z R  the number of zero coefficients in ,R  is a simple 
measure of the complexity of the spectrum of a function but is 
not a direct measure of function complexity since all EXOR 
functions, including single variables and their complements, have 
2 2n −  zero-valued coefficients.  However, all such functions 
are equivalent under linear translation [6][7], and hence 
amenable to implementation using Feynman gates, so ( )Z R is 
of interest. 

In the synthesis procedure described below, we use the 
complexity metric 

 ( ) ( ) ( )2nD f n Z C f= +R  (9) 

( )D f gives a higher value the greater the number of zero-
valued spectral coefficients, and when that measure is equal, to 
functions with higher adjacency count.  Single variables and their 
complements yield the maximum value of ( )D f for a given 
n although they are not unique in that regard. 

3. SYNTHESIS 
The synthesis approach presented here is an enhancement to the 
method presented by the first author in [13].  In particular, the 
earlier method developed the circuit from the outputs towards the 
inputs.  Here we develop the circuit in both directions. 

3.1 Output Translation 

An output translation is the application of a TOFn gate across a 
set of functions (outputs).    In general, this can be expressed as  

 
2 1

TOF ( , ,..., , )
n

n f f f fα α α β−
 (10) 

The single output fβ  is affected.  For example, Table 3 shows 
the application of the output translation 0 1 2TOF 3( , , )f f f which 
results in 2 0 1 2f f f f+ = ⊕ . 

c b a f0f1f2  c b a f0f1f2+ 
0 0 0 0 0 0  0 0 0 0 0 0 
0 0 1 0 0 1  0 0 1 0 0 1 
0 1 0 0 1 0  0 1 0 0 1 0 
0 1 1 0 1 1  0 1 1 0 1 1 
1 0 0 1 0 0  1 0 0 1 0 0 
1 0 1 1 1 0  1 0 1 1 1 1 
1 1 0 1 0 1  1 1 0 1 0 1 
1 1 1 1 1 1  1 1 1 1 1 0 

(a)                                           (b) 

Table 3: (a) before translation (b) after output translation. 
 
This simple translation interchanges two output patterns 
(emphasized in bold italics).  In general, an output 
translation will interchange blocks of rows.  The 

reversibility of the specification is clearly preserved.  The 
synthesis method in [13] employed only this form of 
translation.  In our method the translation is performed 
directly on the function spectra. 

3.2 Input Translation 

An input translation is similar but applies to the input side of the 
specification.  The general form is 

 
1 2 1

TOF ( , ,..., , )
n

n x x x xα α α β−
 (11) 

Only input xβ is affected.  Table 4 illustrates application of the 
input translation TOF2( , )b c resulting in c c b+ = ⊕ . 

c b a f0f1f2  c+ b a f0f1f2  c+ b a f0f1f2 
0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0 0 
0 0 1 0 0 1  0 0 1 0 0 1  0 0 1 0 0 1 
0 1 0 0 1 0  1 1 0 0 1 0  0 1 0 1 0 1 
0 1 1 0 1 1  1 1 1 0 1 1  0 1 1 1 1 1 
1 0 0 1 0 0  1 0 0 1 0 0  1 0 0 1 0 0 
1 0 1 1 1 0  1 0 1 1 1 0  1 0 1 1 1 0 
1 1 0 1 0 1  0 1 0 1 0 1  1 1 0 0 1 0 
1 1 1 1 1 1  0 1 1 1 1 1  1 1 1 0 1 1 

(a)                                  (b)                                   (c) 

Table 4: (a) before translation (b) after input translation 
(c) after rearrangement. 

 
Table 4 (c) shows the result after rearranging the input patterns 
into standard order.  From this we see that an input translation in 
fact interchanges blocks of output patterns.  In general, as shown, 
the movement of output patterns resulting from an input 
translation cannot be accomplished by an output translation.  
Also note that an input translation will generally affect more than 
one output, and often all outputs, whereas an output translation 
always affects a single output. 

Input translations can be carried out directly in the spectral 
domain but except for TOF1 and TOF2, the operations are rather 
complex.  Our current implementation performs the translation in 
the function domain and then transforms the results to spectra. 

3.3 Synthesis Method 
Given a reversible logic specification expressed as a system of 
Boolean functions ( )2 1,..., , ,1 ,i nf x x x i n≤ ≤ our method 
first transforms each function to the spectral domain giving the 
spectra ,1 .i i n≤ ≤R .   

The first phase of our method is the iterative application of the 
following procedure which for each iteration identifies a single 
generalized Toffoli gate and input complementation pattern. The 
identified gate corresponds to either an input or an output 
translation, whichever is found to be best in terms of improving 
the complexity measure D. Computations for output translation 
are carried out in the spectral domain using the rules in Table 2.  
Computations for input translations require conversion between 
the spectral and functional domains. 
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Procedure 

Input: Spectra ,1i i n≤ ≤R . 

Output: One generalized Toffoli gate and input permutation 
pattern, and transformed spectra ,1i i n+ ≤ ≤R . 

Process:  

(a) Examine the effect of each input translation and select the 
translation (generalized Toffoli gate and input 
complementation pattern) that results in the maximum 
positive change in ( )iD f summed across all the output 
functions with no negative change to any ( )iD f .  In the case 
of a tie, choose the one with fewest gate inputs and if there is 
more than one with maximum positive change and the same 
number of inputs, choose the one with the minimum number 
of input complementations.  If there is still a tie, the first 
encountered is arbitrarily chosen.  Note that complementation 
of the variable affected by a Toffoli gate is never considered. 

(b) Examine the effect of each available output translation and 
select the translation (generalized Toffoli gate and input 
complementation pattern) that results in the maximum 
positive change in ( )iD f for the single output function 
affected by the translation.  Ties are resolved in the same 
manner as for input translations.  Note that output translations 
are not considered that would affect an output that has 
already been translated to a single variable or its complement.  
Once again, complementation of the variable affected by the 
Toffoli gate is not considered. 

(c) If neither (a) or (b) identifies a translation, the procedure 
terminates in error.  Otherwise choose the translation from (a) 
or (b) that results in the greatest improvement.  In the case of 
a tie, the input translation is chosen. 

(d) If an output translation is chosen in (c), jj
+ =R R , j i≠ , 

where if is the output affected by the selected gate.  i
+R is 

computed based on the chosen translation directly in the 
spectral domain. 

(e) If an input translation is chosen in (c), each of the iR is 
transformed to the functional domain, the functional 
specifications are rearranged according to the input 
translation, and the i

+R are then found by transforming the 
permuted functional specifications. 

 

The synthesis process is complete when the spectra iR  each 
represent a unique variable or its complement.  At this point we 
have an ordered list of possible interleaved input and output 
translations, each with an associated generalized Toffoli gate and 
input complementation pattern.  

 

 

In the second phase of our procedure, the circuit is produced as 
an ordered sequence of generalized Toffoli gates as follows: 

(a) Each output function that has been translated to the 
complement of an input variable requires a TOF1 (NOT) gate 
as a final output translation. 

(b) The output permutation ,1 ,ip i n≤ ≤ is such that 
ipx is 

the variable, or complemented variable, identified by iR . 

(c) The circuit begins with the Toffoli gates from input 
translations listed in the order they were identified. 

(d) The circuits concludes with the Toffoli gates from output 
translations listed in reverse order to the order in which they 
were identified.  This set of Toffoli gates begins with any 
TOF1 gates identified in (a).  The variable labels for the 
Toffoli gates associated with output translations including the 
TOF1 gates are relabeled according to the permutation 
identified in (b). 

(e) The identified circuit produces the originally specified 
outputs in the permutation order identified in (b). 

(f) As a final step, Fredkin gates can be inserted by applying (1).  
Other optimizations can be applied such as inverter reduction. 

The circuit is produced as a sequence of Toffoli gates from the 
input side to the output side.  Of course, applying the sequence in 
reverse transforms the output side to the input side. 

The synthesis procedure described here is a significant extension 
to the one described in [13] as it uses input translation as well as 
output translation. In addition, the procedure has been extended 
to generalized Toffoli gates.  The work in [13] considered only 
up to TOF4 gates.  Finally, the procedure described here uses a 
different rule for breaking ties.  Preference is here given to 
maximizing the improvement in the function complexity metric 
whereas in [13] preference was given to minimizing the gate 
width.  Experimentation has shown the scheme used here in 
general yields better results. 

4. REVERSIBLE EXAMPLES 

For each example, the specification is given as an ordered set of 
decimal numbers which define the truth table specification of the 
reversible logic problem to be realized.  To illustrate, the 
specification for Example 1 defines a Fredkin gate as specified in 
Table 5.  The circuit is given as an ordered sequence of reversible 
gates.  Read from left to right they transform the left side of the 
specification to the right side.  The output permutation is not 
noted if it is the identity. 

Example 1: Verification of realizing a Fredkin gate using two 
Feynman gates and a Toffoli gate. 

Specification: [0,1,2,3,4,6,5,7] (corresponds to Table 5) 

Circuit: TOF2(b,a) TOF3(c,a,b) TOF2(b,a) 
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c b a c+ b+ a+ 
0 0 0 0 0 0 
0 0 1 0 0 1 
0 1 0 0 1 0 
0 1 1 0 1 1 
1 0 0 1 0 0 
1 0 1 1 1 0 
1 1 0 1 0 1 
1 1 1 1 1 1 

Table 5 Fredkin Gate Specification. 

Example 2: This is a second example of the interchange of two 
positions in the specification.  Note the analogous structure to 
that of the Fredkin gate realization – the right pair of TOF2 gates 
can be reversed to better show the expected symmetry.   The 
circuit given by our method is identical to a solution provided by 
Perkowski [16]. 

Specification: [0,1,2,4,3,5,6,7] 
Circuit: TOF2(c,b) TOF2(c,a)  TOF3(b,a,c)  TOF2(c,b) 
TOF2(c,a) 

Example 3: The four input extension of Example 2. The right 
three TOF2 gates can be permuted to better show the symmetry. 

Specification: [0,1,2,3,4,5,6,8,7,9,10,11,12,13,14,15] 
Circuit: TOF2(d,c) TOF2(d,b) TOF2(d,a) TOF4(c,b,a,d) 
TOF2(d,c) TOF2(d,b) TOF2(d,a) 

Example 4: This is increment mod2n for 3.n =  

Specification: [1,2,3,4,5,6,7,0] 
Circuit: TOF3(b,a,c) TOF2(a,b) TOF1(a) 

Example 5: This is the 4 input extension of Example 4.  Note the 
generalization to the structure of the solution for the 3n =  
case.  The structure generalizes in the same manner for higher 
values of n. 

Specification: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0] 
Circuit: TOF4(c,b,a,d) TOF3(b,a,c) TOF2(a,b) TOF1(a) 

Example 6: This example is taken from [17].   

Specification: [3,11,2,10,0,7,1,6,15,8,14,9,13,5,12,4] 

Circuit: TOF1(c) TOF1(b) TOF2(a,d) TOF2(c,d) TOF3(a',d,c) 
TOF2(c,d) TOF2(c,a) TOF3(a',d',b) 

The three underlined gates in the above solution can be replaced 
with the single Fredkin gate FRE(a',c,d).  The outputs of the 
circuit are the permuted order (c,a,d,b).  Note that (d,c,b,a) is the 
standard unpermuted order.  The solution is comparable to the 
solution given in [17]. 

Example 7: This is the inverse to the specification in Example 6.  
This shows the importance of applying our synthesis method to 
both a specification and the corresponding inverse (except when 
the specification is self-inverse) and choosing the better of the 
results. 

Specification: [4,6,2,0,15,13,7,5,9,11,3,1,14,12,10,8] 

Circuit: TOF3(c',b',a) TOF2(c,b) TOF2(c,d) TOF1(b)  
TOF1(a) TOF3(b,d,c) TOF2(c,b) 

In this case, the output permutation is (c,b,a,d).   

Comparing the solution for Examples 6 and 7 shows the 
importance of applying the synthesis method to a problem and its 
inverse.  The resulting circuit can be quite different.  One can of 
course choose between the solution to a problem or its inverse, 
since reading a solution in reverse gives a circuit for the inverse 
problem due to the reversibility of the gates.  For example, 
reading the solution for example 6 from right to left is a solution 
for Example 7, and reading the solution for Example 7 from right 
to left is a solution for Example 6. 

5. IRREVERSIBLE EXAMPLES 

An arbitrary combinational circuit composed of irreversible gates 
can be mapped to a reversible circuit typically with the addition 
of some number of constant inputs and ‘garbage’ outputs [14].  
Here our interest is to synthesize a reversible circuit from an 
irreversible specification and not the transformation of a 
irreversible circuit to a reversible one.  To apply our synthesis 
method, an irreversible specification must first be transformed to 
a reversible one.  We assume the given specification is totally-
specified. 

5.1 Single-Output Functions 

A single-output function f involving input variables 
1 2, ,..., nx x x is transformed to a specification with 1n + inputs 

and 1n + outputs by: 

i)  adding a new input variable 1nx + , 

ii)  replacing the output f  by 1nf x +⊕ , 

iii) adding n outputs each equal to one of the original inputs 
1 2, ,..., nx x x . 

It is easily verified that the specification constructed in this way 
assigns a unique output pattern to each input pattern and is 
therefore reversible.  By setting 1 0nx + = on input, the original 
output f is realized.   

Example 8: This procedure for transforming a single-output 
function is illustrated for the simple example of the 2-input AND 
function in Table 6.  The resulting circuit is the single gate 
TOF3(b,a,c) which realizes the AND of a and b when c is 0 on 
input. 

b a f  c b a c+ b+ a+ 
0 0 0  0 0 0 0 0 0 
0 1 0  0 0 1 0 0 1 
1 0 0  0 1 0 0 1 0 
1 1 1  0 1 1 1 1 1 
   1 0 0 1 0 0 
   1 0 1 1 0 1 
   1 1 0 1 1 0 
   1 1 1 0 1 1 

                             (a)                                (b)      

Table 6: (a) 2-input AND (b) reversible specification 
derived from 2-input AND. 
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Example 9: The two of five checker function has five inputs and 
a single output which is 1 if, and only if, two of the inputs are 1. 
Transforming this function to a reversible specification as 
described above and then applying our synthesis procedure yields 
the circuit: 

TOF3(b',a',f) TOF4(d',c',a,f) TOF4(e',c',b',f) 
TOF6(e,d',c',b,a,f) TOF6(e',d',c,b',a,f) TOF6(e',d,c',b,a',f) 
TOF6(e,d,c,b',a',f) TOF5(e',d',c,a',f) TOF5(e,d',c',a',f) 

with output permutation (f,e,d,c,b,a).  Variable f is the desired 
output and should be set to 0 on input.  This solution uses two 
more Toffoli gates than the solution found by Dueck and Maslov 
[3].  Their algorithm uses exhaustive evaluation at each stage 
including two-step look-ahead to choose the best generalized 
Toffoli gate. 

Example 10: To illustrate this process is equally effective for a 
non-symmetric function, consider the 5-input, single output 
function which is 1 for the five input patterns e'd'c'b'a, e'd'c'ba, 
e'd'cba, e'dcba and edcba.  Our approach identifies the simple 
circuit 

TOF6(e,d,c,b,a,f) TOF5(e',c,b,a,f) TOF5(e',d',c',a,f) 

where again variable f is the desired output and should be set to 0 
on input. 

5.2 Multiple-Output Functions 

The approach described above or an extension to it is applied for 
multiple-output functions.  In this case, the number of outputs to 
be added is at least  2log m where m is the maximum number 
of times a single output pattern appears in the given specification 
[11].  Additional outputs and also additional inputs may be 
required to ensure the derived specification has the same number 
of inputs and outputs, a requirement for it to be reversible.  The 
transformation of the given specification must be done in such a 
way as to yield a reversible specification without introducing 
undue complexity. 

Example 11: Table 7 is a reversible specification derived from a 
full adder specification shown in bold italics.  Two outputs must 
be added, as the output patterns 01 and 10 each appear 3 times in 
the specification of the full adder. 

The resulting circuit is  

TOF2(b,c)  TOF2(a,c) TOF1(d)  TOF2(c,d)  TOF4(c',b',a',d)  
TOF4(c,b,a,d) 

which can be simplified by replacing TOF1(d) TOF2(c,d) by 
TOF2(c',d).  Applying our synthesis method to the inverse of the 
specification in Table 7, yields the similar complexity circuit: 

TOF2(b,c) TOF2(a,c)  TOF2(c,d)  TOF4(c,b',a',d)  
TOF4(c',b,a,d) 
 
 
 

d c b a d+ c+ b+ a+ 
0 0 0 0 0 0 0 0 
0 0 0 1 0 1 0 1 
0 0 1 0 0 1 1 0 
0 0 1 1 1 0 1 1 
0 1 0 0 0 1 0 0 
0 1 0 1 1 0 0 1 
0 1 1 0 1 0 1 0 
0 1 1 1 1 1 1 1 
1 0 0 0 1 0 0 0 
1 0 0 1 1 1 0 1 
1 0 1 0 1 1 1 0 
1 0 1 1 0 0 1 1 
1 1 0 0 1 1 0 0 
1 1 0 1 0 0 0 1 
1 1 1 0 0 0 1 0 
1 1 1 1 0 1 1 1 

Table 7: Reversible specification derived from the 
full adder (bold italics). 

The simpler circuit 

TOF2(b,a) TOF2(a,c) TOF3(c,a,d)  TOF3(b',a',d) TOF1(d) 

is found by changing the specification in Table 7 so that 
a a b+ = ⊕ .  This definition for a+ is taking into account that 
a b⊕ is a useful subfunction in the realization of the sum and 
carry functions of the full adder.  Knowledge of the 
decomposition structure of the target functions is of considerable 
benefit in choosing a reversible specification. 

Applying our synthesis approach to the inverse of the latter 
specification yields: 

TOF2(a,c) TOF2(b,a) TOF2(c,d) TOF4(c,b',a',d) 
TOF4(c',b,a,d) 

which is more complex.  This latter circuit is interesting to 
compare to the circuit found from considering the inverse of the 
original specification in Table 7. 

Example 11: As a final example we consider the benchmark 
function RD53.  This function has 5 inputs and 3 outputs.  The 
outputs are the binary encoding of the weight of the input pattern 
i.e. the number of 1's in the input pattern.  For example, input 
00000 yields output 000, input 00100 yields output 001 and input 
11111 yields output 101. 

The maximum output pattern multiplicity is 10 so at least 4 
garbage outputs must be added giving a total of at least 7 outputs.  
That in turn requires two inputs be added.  We thus have a 
specification with inputs , , , , , ,g f e d c b a and outputs 

, , , , , ,g f e d c b a+ + + + + + + where , , , ,e d c b a are the original 
inputs.  Let 2 1 0, ,h h h be the original outputs with 2h the most 
significant bit of the binary representation of the weight. 

A reversible specification can be derived using the principles 
outlined above by setting  

 
2 1 0, , ,

, , , .

g h g f h f e h

d e c d b c a b

+ + +

+ + + +

= ⊕ = ⊕ =

= = = =
 (12) 
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Setting 0g f= = yields the desired outputs.  Applying our 
synthesis method to this specification yields the circuit 

TOF4(e,b,a,g) TOF2(e,a) TOF2(d,a) TOF2(c,a) TOF2(b,a) 
TOF1(f) TOF6(a,e',d',c',b,f) TOF6(a',e,d,c',b',f 
TOF5(a,e',d',b',f) TOF4(a',e,d,f) TOF2(a,f) TOF6(a',e,d',c,b,f) 
TOF6(a,e',d,c',b',f) TOF6(a',e',d,c,b,f) TOF6(a,e,d',c',b',f) 
TOF2(a,f) TOF6(a',e',d',c',b',f) TOF6(a,e,d,c,b, 
TOF6(a',e',d,c,b,g) TOF6(a,e,d',c',b,g) TOF5(a',e,d,c,g) 

with output permutation (g,f,a,e,d,c,b).  The underlined TOF1 
gate can be removed by replacing the underlined TOF2 gate by 
TOF2(a',f). 

The sequence TOF2(e,a) TOF2(d,a) TOF2(c,a) TOF2(b,a) in the 
above circuit is an indication that parity plays an important role 
in RD53.  Changing the specification in (12) so that 
d e d c b+ = ⊕ ⊕ ⊕ and applying our synthesis procedure 
yields a circuit with  15 generalized Toffoli gates.  That circuit 
shows some further parity dependency. This led us to consider 
the following reversible specification: 

 

2 1 0, , ,

, ,

, .

g h g f h f e h

d e d c b c d c b

b c b a b

+ + +

+ +

+ +

= ⊕ = ⊕ =

= ⊕ ⊕ ⊕ = ⊕ ⊕

= ⊕ =

 (13) 

Applying our synthesis algorithm yields the circuit 

TOF5(e,d,c,a,g) TOF2(b,c) TOF2(c,d) TOF2(d,e) TOF2(e,a) 
TOF3(e,a,f) TOF3(c',b,f) TOF3(d',c,f) TOF3(e',d',f) TOF1(f) 
TOF5(a',e,d',b,g) TOF5(a',d,c',b,g) 

with output permutation (g,f,a,e,d,c,b).  This circuit requires 12 
Toffoli gates as opposed to 20 for the initial reversible 
specification.  Far fewer input complementations are needed and 
the width of the required gates is greatly reduced.  Note that the 
TOF1 gate can be removed by complementing f in (13).  This 
assumes a constant 1 can be used as an input in the final circuit 
implementation.  The circuit found by our method in that case 
uses 11 Toffoli gates, whereas the method in [3] requires 13 
Toffoli gates with higher input counts. 

This example clearly shows the benefit of taking properties of the 
target functions and an initial circuit realization into account 
when constructing and refining the reversible specification.   

6. CONCLUSION 

Results to date show the spectral-based synthesis method does 
indeed have promise.  We are currently developing a formal 
proof that the method will terminate giving a circuit for any 
completely-specified reversible specification. 

The preliminary implementation of our synthesis method is in C 
and represents functions and their spectra as vectors of length 
2n although fast transform methods [6][18] are used in the 
implementation rather than the matrix transformation method.  

Execution time on a 750 MHz PC is reasonable for the examples 
shown, about 3 minutes for RD53.  A decision diagram 
implementation is under development so the method can be 
applied to larger problems.  Preliminary work has shown that 
input and output translations can be carried out directly on 
functional or spectral decision diagrams.  In particular, input 
translations can be performed as local translations on a decision 
diagram provided the variables involved are adjacent. 

While our synthesis method does not require extensive look-
ahead or back-tracking techniques, it does require the full 
consideration of the possible Toffoli gates and input 
complementation patterns at each stage of the synthesis.  We are 
currently investigating spectral criteria to reduce this searching.  

Lastly, we are examining how to formalize the transformation of 
a nonreversible specification to a reversible one.  In particular, 
we are examining how spectral criteria that may aid this process. 
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