
Synthesis of Quantum Multiple-Valued Circuits

D. Michael Miller, Dmitri Maslov

Department of Computer Science

University of Victoria

Victoria, BC, V8W 3P6 Canada

Gerhard W. Dueck

Faculty of Computer Science

University of New Brunswick

Fredericton, NB, E3B 5A3 Canada

February 16, 2004

Abstract

An r-valued m-variable reversible logic function maps each of the r
m input patters to a unique

output pattern. The synthesis problem is to realize a reversible function by a cascade of

primitive reversible gates.

In this paper, we present a simple heuristic algorithm that exploits the bidirectional synthesis

possibility inherent in the reversibility of the specification. The primitive reversible gates

considered here are MVL extensions of the well-known binary Toffoli gates. We analyze the

structure of the gates that we use and show how these gates can be easily simulated in a

quantum technology.

We present exhaustive results for the 9! 2-variable 3-valued reversible functions comparing

the results of our algorithm to optimal results found by breadth-first search. We also show

results for specific ternary examples including showing how the presented technique can be

applied to the synthesis of a 3-input, 3-valued adder which is not itself a reversible problem.

When the circuit for the full adder is synthesized, we use it as an example of an approach to

a circuit simplification, called the templates tool. Formalization and proper investigation of

the templates simplification tool proposed in this paper is still under investigation.

1

Keywords: logic synthesis, quantum circuits, MVL, reversible logic.

1 Introduction

A binary or MVL circuit is reversible if it maps each input pattern to a unique output pattern.

Landauer [9] proved that traditional binary irreversible gates lead to power dissipation in a circuit

regardless of its implementation technology. Recently, Zhirnov et al. [19] calculated that power

dissipation in future CMOS (scaled for the year 2016 in accordance with the year 2001 Interna-

tional Technology Roadmap for Semiconductors) leads to impossible heat removal, and thus the

impossibility of further speeding up CMOS technology devices. Bennett [4] showed that for power

not to be dissipated it is necessary that a binary circuit be build from reversible gates. Binary

reversible circuits have been studied for their potential application in quantum computation [14],

low-power CMOS design and optical computing.

Here1 we consider the synthesis of a reversible MVL circuit as a composition of reversible MVL

logic gates. We make the following assumptions that are dictated by one of the probable target

technologies (quantum), and, most likely, some other reversible technologies:

• fan-out between gates is not permitted;

• loops are not permitted; and

• permutation of connections between gates is permitted.

We employ MVL reversible gates that are extensions of the binary reversible NOT, Feynman [5]

and Toffoli gates [17]. The gates considered are those introduced by De Vos et al. [18] and simple

extensions of those gates. We describe the gates that we use constructively, that is, assuming

that the quantum cost can be efficiently approximated by the number of one-qubit and two-qubit

controlled-V quantum transformations [3, 14]. We show how to simulate our MVL gates with the

above operations.

1A preliminary version of this work [13] is to be presented at ISMVL-04.

2

The gates considered here are not the only possible MVL reversible gates nor are they the only

possible extension to the Toffoli gate. Picton [15, 16] introduced an MVL generalization of the

binary Fredkin gate. Al-Rabadi [2] has considered a generalization of the Toffoli gate where EXOR

is replaced by mod-sum. Khan et al. [8] have considered several MVL (ternary) reversible gates.

The set of gates we use here is of interest because of its relative simplicity and consistency and

because preliminary investigations indicate that implementation should be relatively efficient. The

reader will observe that due to the simple nature of our synthesis method it can be extended to

other sets of primitive reversible gates.

Synthesis of reversible logic is very different from conventional synthesis. Since loops are not per-

mitted, a reversible logic circuit can be specified as a simple sequence of gates. Further, since

fan-out is not permitted, and assuming an appropriate technology, a reversible logic circuit can

realize the inverse specification simply by applying the gates in the reverse order since the gates

themselves implement reversible functions. Hence, synthesis can be carried out from the inputs

toward the outputs or from the outputs toward the inputs. The method presented here synthe-

sizes the circuit by working in both directions simultaneously. In addition, it is advantageous to

synthesize a circuit for a given specification and also for its inverse taking the solution to be the

simpler result. The synthesis method presented here is based on the binary method developed by

the authors in [12], but there are certain novel issues to deal with in the MVL case.

The background on reversible logic necessary for this paper is outlined in Section 2. The MVL

reversible gates used in this work are described in Section 3. In Section 4 we analyze how the

ternary computations and the gates that we propose to use for the synthesis can be implemented in

a quantum technology. The interested reader is referred to [14] for extensive background. Section 5

presents our synthesis algorithm. An example illustrating the operation of the algorithm is worked

in some detail in Section 6. Experimental results are given in Section 7 and an irreversible example,

the 3-valued full adder is shown. In Section 8 we further explore the example from Section 7 and

show how the synthesized circuit can be simplified. The paper concludes with observations and

ideas for further research in Section 9.

3

2 Background

Definition 1. Anm-input, m-output, (writtenm×m) totally-specified MVL function is reversible

if it maps each input assignment to a unique output assignment. I

A reversible function thus defines a permutation of the input patterns and there are clearly rm!

r-valued, m×m reversible functions.

Definition 2. An n-input, n-output gate is reversible if it realizes a reversible function. I

The synthesis problem is how to realize a given reversible specification using a basic set of reversible

gates.

A variety of binary reversible gates have been considered. The common NOT gate realizes a

reversible function. Another binary reversible gate is the Fredkin gate [6] which has three inputs

and three outputs. The first input is passed through unaltered. The second and third pass through

unaltered if the first input is 0 and are exchanged if the first input is 1. There is also the family of

Toffoli gates [17] defined as follows:

Definition 3. An n × n Toffoli gate passes the first (n − 1) (control) lines through unchanged,

and inverts the nth line (target) if the control lines are all 1. I

NOT, Fredkin and Toffoli gates are all self-inverse since applying two gates of the same type and

size in order results in an identity permutation.

3 MVL Reversible Gates

A. De Vos et al. [18] have considered the cycle and negation operations in Table 1, denoted C1

and N respectively, and the controlled versions of those gates, denoted CC1 and CN , given in

Table 2, as generators of the group of all 2 × 2 3-valued reversible logic functions. The notation

4

used here is that symbols such as x and y denote the line values on one side of a reversible gate

while x+ and y+ denote the corresponding values on the other side of the gate.

We have written a program to determine the number of gates for circuits realizing the 9! = 362, 880

2 × 2 3-valued reversible logic functions for different sets of basic reversible gates. The program

performs a breadth-first search so the first circuit found for each function uses minimal gates.

Results are shown in Table 3.

C1 N

x x+ x+

0 1 2

1 2 1

2 0 0

Table 1: MVL gates C1 and N .

CC1 CN

x y x+ y+ x+ y+

0 0 0 0 0 0

0 1 0 1 0 1

0 2 0 2 0 2

1 0 1 1 1 2

1 1 1 2 1 1

1 2 1 0 1 0

2 0 2 0 2 0

2 1 2 1 2 1

2 2 2 2 2 2

Table 2: MVL gates CC1 and CN .

5

Cyclic inversion (C1) together with controlled negation (CN) is the only operation pair that can

realize all 362,880 functions. As shown, the circuits can be quite long. Adding, controlled cycle

(CC1) and negation (N) in turn both improve the results. The latter is the set of operators

suggested by De Vos et al. [18].

The rightmost column in Table 3 shows the further improvement gained by adding cycle by 2 (C2)

and controlled cycle by 2 (CC2) defined in Tables 4 and 5 respectively. Clearly, N and CN are

self-inverse. C1 and C2 are the inverse of each other. Hence, CC1 and CC2 are the inverse of

each other. In the next section we also show that the gates C2 and CC2 are no harder to simulate

in quantum technology than the gates C1 and CC1 correspondingly. Thus, the usage of gates C2

and CC2 is preferred to the usage of a reversible circuit from the elements C1, N, CC1 and CN .

Negation can be extended to any r-valued logic as x̄ = (r−1)−x. There are (r−1) cyclic inversions

for r-valued logic defined in the obvious way. Controlled cycles and controlled negation can be

generalized to the n× n cases for r-valued logic as specified in the following definition.

Definition 4. An n × n r-valued controlled unary gate passes the first (n − 1) (control) lines

through unchanged, and applies a specified unary operation to the nth line if the control lines are

all 1, otherwise the target line is passed through unaltered. I

The Fredkin gate can clearly be extended to the MVL case (and it also turns out that in a quantum

realization the MVL Fredkin gate is the same as the regular 2-CNOT 1-Toffoli binary Fredkin gate),

but we do not consider that in this paper.

4 Quantum Implementation Analysis

A natural and important question would be if reversible ternary computations are supported by

an existing technology. Since reversible logic is often considered in conjunction with quantum

computations, we illustrate how quantum technology allows inexpensive modeling of the reversible

ternary computations. For that, we need to:

6

• show how to code ternary constants 0, 1 and 2 with quantum bit states;

• show how to measure the output once the coding is provided;

• build the quantum gates C1, C2, N , D and E (the last two are defined in Table 6) which

would act like the corresponding ternary gates when their domain is restricted to the set of

quantum codings of ternary 0, 1 and 2;

• estimate the quantum implementation costs of these gates and their controlled versions.

We briefly review the basic concepts of quantum computation. For a more detailed and formal

introduction we refer reader to [14]. A single quantum bit (qubit) has one of the two possible

states, 0 or 1, traditionally depicted as |0〉 and |1〉 correspondingly. Due to the physical nature of

the object that represents a quantum bit, its measurement gives the result of |0〉 or |1〉 with some

probabilities p and q (p + q = 1). Further, it turns out that the state of a single qubit is a linear

combination α|0〉 + β|1〉 (also written as a vector (α, β) in the basis {|0〉, |1〉}), where α and β

are complex numbers called amplitudes, and |α|2 + |β|2 = 1. Real numbers |α|2 and |β|2 represent

the probabilities of reading the states |0〉 and |1〉 upon measurement. The state of a quantum

system with n > 1 qubits is described as an element of tensor product of the single state spaces,

thus, being a structure that can be mapped into a normalized vector of length 2n, called the state

vector. The quantum system evolution allows changes of the state vector given by multiplications

by 2n × 2n unitary matrices. This principle states the conditions upon which a transformation

can be performed, but does not tell how hard it is to do the transformation. Further, for different

quantum technologies the same gate may have very different costs associated with how hard it is

to implement it.

Given that, for the general case it makes sense to suppose that one qubit and two qubit controlled-

V operations (the state of a single qubit is changed according to the form of 2× 2 unitary matrix

V iff the state of the controlling qubit is |1〉) have a low cost and estimate the cost of a quantum

computation by the number of one qubit and controlled-V operations needed for the computation.

This will give a very crude approximation, but may be a good starting point.

7

Measurement of a one qubit system α|0〉+β|1〉 can be understood as a projection, that is, reading

|0〉 with probability |α|2 and |1〉 with probability |β|2. Once the measurement is done, and the result

of |0〉 or |1〉 read, every next measurement gives the same result as the one read before. Thus, the

meaningful measurement of a single qubit can be done only once. However, it is possible to make

the quantum computation on several quantum systems in parallel and then do the measurements.

Then, the average of these measurements gives an estimation of values |α|2 and |β|2. Projections

onto non-basis vectors are also possible.

There are many approaches to the physical realization of quantum computations. Among them are

(liquid) NMR, optical, trapped ion, neutral atom, solid state, superconducting and other technolo-

gies [7]. All are so different, that it is difficult to make general assumptions and to develop general

methods that will be suitable for all technologies. In this paper, we consider NMR technology as

a primary application. Among the named technologies NMR technology appears to be one of the

most promising technologies, also one that has been most investigated. Major problem includes

absence of an efficient initial state preparation procedure, during which the signal loss would not be

tremendously high (exponential in number of qubits as n2−n for the current inefficient preparation

procedures [14]). This prevents construction of large NMR quantum computers at the present

time. However, we hope to partially overcome this obstacle by considering MVL computations

that require less qubits in comparison to the binary case in the following sense. If, for example,

the domain size for a problem is required to contain 1000 instances, at least 10 (= dlog2(1000)e)

qubits should be used in binary case, whereas in ternary this number is only 7 (= dlog3(1000)e).

Currently, the practical number of qubits in NMR technology is 7 [1].

We suggest that the ternary values 0, 1 and 2 are coded by the states
√

3|0〉−|1〉
2 , |1〉 and −

√
3|0〉−|1〉

2

of a single qubit correspondingly (Figure 1). Further, we refer to ternary 0, 1 and 2 as the

corresponding quantum states. The next two paragraphs explain why we chose the above encoding.

In order to be able to read and reliably distinguish the ternary states in NMR, when the compu-

tation stage is finished, divide the set of all molecules into two parts. Then, in the first part we

8

|1>

|0>

=1

02

Figure 1: Ternary states.

measure ternary 1 and on the second measure ternary 2. For simplicity consider the first part,

where ternary value 1 is measured. If the actual state of the qubit was 0, the measurement will

produce reading of the signal with intensivity
(

− 1
2

)2
= 1

4 . If the actual value was 2, the reading

will be the same, 1
4 . Only if the actual value was 1, the measurement signal will be 1. Thus, the

first part distinguishes value 1. Note, that from the point of view of such measurement the states

0 and 2 will be indistinguishable. Similarly, it can be concluded that the second part distinguishes

value 2. It is easy to see that if none of the two parts distinguished their value (that is, produced

a unit signal upon measurement), the actual value of the measured qubit was 0.

In the following we show how the ternary gates C1, C2, N , D and E can be simulated by circuits

with simple quantum gates. C1 gate is quantum rotation gate R(2π/3), C2 is rotation R(−2π/3),

N is −Z, where Z is a Pauli-Z gate. These are very simple gates and the literature [14, 3] suggests a

low cost for them and uses them as elementary building blocks. We assign the cost of one to each of

these three operations. Gates D and E are somewhat more expensive. But, they can be simulated

using gates C1, C2 and N . Gate D can be simulated by the network N C1 and E by the network

N C2. Thus, their costs are two each. The literature [14] has no explanation on how to construct

controlled Pauli-Z, but uses such gate. Similarly, we assume that the cost of each gate CC1, CC2

and CN is one. Then, the gates controlled-D and controlled-E can be simulated with the circuits

CN CC1 and CN CC2 respectively, giving the cost of 2 for these implementations. Gates C1,

C2 and N with two controls each can be simulated by the circuit with 5 gates, illustrated on page

182 of [14]. Using the simulation of one bit gates D and E by the gates C1, C2 and N , one can

easily build circuits with cost 8 for the gates D and E with two controls. The gates with larger

9

2

3

1

x
x
x 2

0

C1
=

C1

C2

C1

C2

C1 =
R()2p/3

R(-)2p/3

R()p/3 R(-)p/3

1

1

R()p/3

R()2p/3

R(-)2p/3

Figure 2: The structure of the C1(x1 = 2, x2 = 0; x3) gate.

sets of controls can be simulated by applying the technique of [3]. For the later considerations, it

is important to notice that the gates C1, C2 and N with 3 unit controls can be simulated with 13

operations.

In addition to the gates analyzed above, the synthesis algorithm presented in Section 5 uses gates

with non-unit controls. Such gates can be simulated by applying the rotations C1 and C2 before

and after the controlling bits are used. We illustrate the above simulations by constructing the

C1(x1 = 2, x2 = 0; x3) gate, a gate that applies C1 transform to the variable x3 iff variable

x1 carries value 2 and variable x2 carries value 0, in Figure 2. The first part of Figure 2 shows

how we depict the gate, second part shows how to simulate the gate when only unit controls

are available, the third part shows the quantum structure of the gate. It can be observed that

C1(x1 = 2, x2 = 0; x3) can be simulated by the circuit with 9 simple quantum gates.

5 A Synthesis Method

An m×m reversible MVL specification is a mapping

F : Q→ Q

where Q is the set of rm m-tuples of r values. We only consider the totally-specified case in this

paper. As F is reversible, there is of course a corresponding inverse mapping

F−1 : Q→ Q

We will write F (x) = y (conversely F−1(y) = x) where x, y ∈ Q and shall denote the elements of

Q as the ordered set {q0, q1, . . . qrm−1} hence qi is the m-ary r-valued expansion of integer i.

10

Our synthesis method operates by finding a sequence of MVL reversible gates whose effect is to

transform F (and of course F−1) to the identity mapping. It is based on the binary synthesis

approach we developed in [12].

There are two aspects of our approach which must be noted at this point. First, our algorithm

allows control values to be any non-zero value. The reason will become obvious in the description of

the algorithm. However, gates with the zero-valued controls are useful and they will be considered

in Section 8. This extension leads to the following:

Definition 5. A generalized n × n r-valued controlled unary gate passes the first (n − 1) lines

through unchanged, and applies a specified unary operation to the nth line if each of the control

lines equals the control value c (0 ≤ c ≤ r − 1) specified for that line; otherwise the target line is

passed through unaltered. I

Also, because our algorithm processes the specification in a specified order, we need an additional

operation D (see Table 6) which we also use as a controlled gate.

Definition 6. For a reversible specification F , the distance between F and the identity is given

by

∆(F) =

rm−1
∑

j=0

d(qj , F (qj)),

where for two r-valued m-tuples a and b

d(a, b) =
m−1
∑

k=0

|ak − bk|.

I

Synthesis Procedure

Input: reversible specification F0.

Output: an ordered set of gates Grm that implements the initial reversible specification.

1. i = 0 and G0 = ∅;

11

2. if Fi(qi) = qi skip to step 9;

3. let S be an ordered set of gates to map Fi(qi) to qi;

4. let T be an ordered set of gates to map F−1
i (qi) to qi;

5. for j = 0 to i set Fi+1(qj) = qj ;

6. if |S| < |T |

(a) for j = i + 1 to rm − 1 set Fi+1(qj) the result of applying the gates in S (in order) to

Fi(qj);

(b) set Gi+1 to Gi| < . . . , S1, S0 > (note, | denotes concatenation);

7. if |S| > |T |

(a) for j = i + 1 to rm − 1 set F−1
i+1(qj) the result of applying the gates in T (in order) to

F−1
i (qj);

(b) set Gi+1 to < T0, T1, . . . > |Gi;

8. if |S| = |T | we apply either 6(a) and (b) or 7(a) and (b) whichever yields the smallest ∆(Fi)

(in the event of a tie, 6(a) and (b) are applied);

9. i = i+ 1;

10. if i < rm − 1 go to step 2.

The following notes clarify the steps of the algorithm.

1. Initialization step.

2. If F (qi) = qi no transformation is required for this pass.

3. The gates to map Fi(qi) to qi are chosen to (a) minimize the number of gates and to (b) ensure

that when they are applied they have no affect for any j < i. The actual procedure for choosing

the gates is given in detail below.

4. This is analogous to step 3 but is being applied in the opposite direction.

12

5. Due to the gate selection process Fi+1 is identical to Fi for q0 to qi.

6., 7. and 8. S is a set of gates that map an output pattern to match the corresponding input

pattern. T is a set of gates that map that input pattern to match the output pattern. The

algorithm selects the smaller set and in the case of a tie the set that results in a specification with

smallest distance to the identity mapping. Note that gates mapping an output pattern to match

the input pattern are appended to the end of G and in reverse order (step 6b). Conversely, gates

mapping an input pattern to match the output pattern are appended to the beginning of G in

order.

9. and 10. are iteration control.

The key to the synthesis algorithm is the selection of a set of gates to map an m-tuple qk to another

qi. By construction, k > i. Also, the gates must be chosen so that they have no affect on any

qj , j < i. Both of these stipulations arise from the fact the algorithm goes through the specification

in order. The gate selection is illustrated below in terms of a generic reversible specification F

which of course can be the inverse of another specification.

Gate Selection Subprocedure

Input: a reversible specification F and an i for which we want to select gates to transform F (qi)

to qi.

Output: an ordered set of gates G performing the required transformation.

1. For ease of notation let a = F (qi) and let b = qi. Set G = ∅.

2. Let k = 0.

3. If ak = bk skip to step 3.

4. Select a gate g that transforms ak to bk with control values (if needed) being the smallest

number of ap, p 6= k so that the value of the control set is greater or equal b. The gate chosen

in the event of a choice is the one that yields a transformed specification such that ∆(F t) is

minimal.

13

5. Set G to G|g.

6. Assign k = k + 1.

7. If k < m go to step 3.

Step 4 is the core of the above procedure. A difference between the binary and the MVL situations

is the variety of choice for mapping one value to another. For example, the case for ternary (r = 3)

is shown in Table 7. In the event there is a choice in constructing the control set, we choose higher

control values.

It is very important to note that in Table 7 we do not use C1 for 1→ 2 transformation or C2 for

2 → 1 transformation as these would always modify an entry earlier in the specification. This is

an artifact of our simple algorithm processing the specification in order. We include E in Table 7

for completeness but note that it is not used in our current implementation.

We can further exploit reversibility by applying the algorithm to F and then to F−1. Even though

the algorithm itself exploits reversibility, it is heuristic and applying it to both the original and

the inverse can produce a different circuit. The circuit for F−1 can of course simply be applied in

reverse to realize F .

Both the synthesis and gate selection procedures are greedy in that they make choices to optimize

the circuit based on only local information. No backtracking or lookahead is used.

6 example

A trace of a 2-variable, 3-valued example will illustrate the operation of the synthesis algorithm.

The initial specification is given in Table 8(a). The choice is to map output pattern 21 to 00

or input pattern 21 to 00. While these seem equivalent, they are not. The synthesis procedure

chooses to map the input pattern 21 as this yields the resulting specification with smaller ∆(F).

The gates required are N(x) and C2(y). The resulting specification is given in Table 8(b) with

bold type denoting the changes which in this case are to the input. The entries 00, 01, . . . , 20

14

x N 2

C2y D

Figure 3: Resulting circuit.

are properly aligned. The next choice is to map 21 to 22 on either the input or the output side.

Both require a single gate which is a controlled D applied to y with control x = 2. The resulting

specification is given in Table 8(c) and is the identity so the process is complete. The circuit is

shown in Figure 3.

7 Experimental Results

We have implemented the synthesis method described in Section 4 in C. Even on a 750MHz PC

with 256MB RAM running Windows XP, the computation time for functions of a few variables

is negligible. The exhaustive enumeration described below takes a few minutes. We have applied

our synthesis algorithm to the 9! = 362, 880 2 × 2 3-valued reversible logic functions. The results

are shown in Table 9. As noted above the algorithm allows control values of 1 and 2 and uses D

operations. E operations are not used. The table shows the results for applying the algorithm to

F only, and the results for applying the algorithm to F and F−1 and taking the smaller circuit.

For comparison, we include the optimal results found by breadth-first search when control values

of 1 and 2 and D operations are permitted.

We present the case of a 3-valued full adder as an example of applying the above reversible logic

synthesis technique to an irreversible specification. The full adder has three inputs x0, x1, x2 and

two outputs which are the sum and carry defined in the obvious way (Table 10).

To apply the above methods to this specification we must embed it in a larger reversible specifica-

tion. Looking at the truth table for the full adder we see that output pattern 10 appears 7 times.

All the output patterns in the reversible specification must be unique. This requires that we add

at least two “garbage” outputs. The term garbage refers to the fact those outputs are not part of

15

2

3

1

0x

x
x
x

2

1

C1

2

C1

2

2

C1

2

2

2

2

C2

2

C2

2

1

2

C2

1

2

2

C2

C1

2

2

2

1

C2

2

C2

1

2

1

1

C1

2

1

C2

C2

1

C2

2

1 C1

2

C2

1

Figure 4: Circuit for the 3-valued 3-bit full adder.

the useful output set.

The reversible specification must have the same number of inputs and outputs, so we must add at

least one “constant” input x3 which we add as the most significant entry in the truth table and

which we define so that setting it to 0 yields the correct sum and carry functions.

The difficult part is how to define the two garbage outputs so that the resulting specification is

reversible and to minimize the resulting circuit. We draw upon our experience of the full adder in

the binary case [12]. The reversible specification is given by

x+
0 = sum(x0, x1, x2)

x+
1 = x1 ⊕ x2

x+
2 = x2

x+
3 = carry(x0, x1, x2)⊕ x3

where ⊕ denotes modulo-3 sum. Note that the ordering of the outputs is important and that the

two garbage outputs are placed between the sum and carry. The circuit only produces the correct

carry when x3 = 0. Choosing the best output ordering is in general difficult. Here it was done by

inspection. Our synthesis algorithm is sufficiently fast that for small problems, one could consider

all possible output permutations. How to choose an output order for a large problem is an open

question.

Applying the synthesis method to the specification described above yields the circuit shown in

Figure 4. 16 gates are required. The algorithm gives 27 gates for the inverse specification.

16

8 Future Work: Templates Simplification Tool

Once the algorithm has terminated with a valid circuit, the latter can be simplified by matching

certain pieces of this network and replacing them with equivalent but smaller pieces. Application

of such procedure may result in a smaller circuit. We systemize this idea by introducing a template

simplification tool [11].

A template of size m is a cascade of gates G0 G1...Gm−1 which realizes the identity function.

Any template of size m should be independent of smaller size templates, i.e. application of smaller

size templates does not decrease the number of gates in a size m template. Given a template

G0 G1...Gm−1, its application for a parameter k, m/2 ≤ k ≤ m and any i such that 0 ≤ i ≤ m is:

Gi Gi+1 (mod m)... Gi+k−1 (mod m) →

G−1
i−1 (mod m) G

−1
i−2 (mod m)... G

−1
i+k (mod m).

Application of such a template is replacement of a piece of network with another piece. If the piece

to be replaced is larger or costly, then template application leads to the network simplification.

However, before we proceed, correctness of template application has to be shown, that is equity

of the first and second part of the transformation. The following set of equalities proves the

correctness for the case where i+ k − 1 ≥ m. For the case i+ k − 1 < m the proof is similar.

G0 G1... Gm−1 = Id

G0 G1... Gm−1 (G0 G1 ...Gi+k−1 (mod m)) =

G0 G1 ...Gi+k−1 (mod m),

G0 G1... Gi−1 (mod m) Gi Gi+1 (mod m) ...Gi+k−1 (mod m) =

G0 G1 ...Gi+k−1 (mod m),

(G−1
i−1 (mod m) ...G

−1
1 G−1

0) G0 G1... Gi−1 (mod m) Gi

Gi+1 (mod m) ...Gi+k−1 (mod m) = (G−1
i−1 (mod m) ...G

−1
1 G−1

0)

17

G0 G1 ...Gi+k−1 (mod m),

Gi Gi+1 (mod m)... Gi+k−1 (mod m) =

G−1
i−1 (mod m) G

−1
i−2 (mod m)... G

−1
i+k (mod m).

If the set of such templates is constructed, it can be used to simplify circuits. We propose a circuit

simplification using templates tool that consists of the two parts. The first uses templates that

consist of the controlled variations of the reversible ternary gates C1, C2, N , D and E, called the

reversible template application. The second uses templates that consist of the quantum one-qubit

and two-qubit controlled-V gates. This second part (as proposed in [10]) is called the quantum

template simplification. Before the quantum templates are applied each reversible ternary gate is

substituted with its equivalent quantum representation, discussed in Section 4 of this work. Our

future work includes construction of the classes of templates and their application to the circuit

simplification. In this paper we only illustrate what simplification can be done using only a few

reversible templates and none of the quantum templates.

Example 1. Take the circuit for the 3-bit full adder in the Figure 4. It can be easily calculated

that the number of quantum operations (as discussed in Section 4) for this circuit is (5 + 1 ∗ 2) +

(5 + 2 ∗ 2) + (13 + 3 ∗ 2) + (5 + 2 ∗ 2) + (13 + 2 ∗ 2) + (5 + 1 ∗ 2) + (5 + 2 ∗ 2) + (1 + 1 ∗ 2) + (13 +

2 ∗ 2) + (5 + 1 ∗ 2) + (13 + 1 ∗ 2) + (5 + 1 ∗ 2) + (1) + (5 + 1 ∗ 2) + (1 + 1 ∗ 2) + (1) = 138.

Consider the following 3 template classes.

1. Ck(S; v) Cl(S; v), where k and l are the numbers such that {k, l} = {1, 2}, S is any set of

controls and v is the target variable of the gate. This class lists some sequences of the two

gates that can be deleted from the network without changing its output.

2. Ck(S; v) Ck(S; v) Ck(S; v), where k is a number from the set {1, 2}, S is a set of controls

and v is a variable. Essentially, it says that application of two identical C1 gates in a row is

equivalent to the application of one C2 gate, and symmetrically, application of two equal C2

gates is equivalent to the application of one C1 type gate.

18

3. Ck(S, v1 = x; v2) Ck(S, v1 = y; v2) Ck(S, v1 = z; v2) Cl(S; v2), where k and l are the

numbers such that {k, l} = {1, 2}, x, y and z are the different ternary numbers, S is any

set of controls, and v1 and v2 are any two different variables.

4. Ck(S1; v1) Cl(S2; v2) Ck(S1; v1) Cl(S2; v2), where k and l are the numbers from the set

{1, 2}, S1 and S2 are the sets of controls, v1 and v2 are the variables (not necessarily

different), v1 is not listed in the set S2 and v2 is not listed in the set S1. This class defines

some of the cases when the gates in a circuit can be moved one past the other. We call it

the moving rule.

The third class can be applied to the first and the second gates of the circuit in Figure 5A when the

parameters are chosen so that k = 1, S = {x0 = 2}, v1 = x1, v2 = x3, x = 1 and y = 2. Then, its

application transforms the sequence of gates C1(x0 = 2, x1 = 1; x3) C1(x0 = 2, x1 = 2; x3) to the

sequence C2−1(x0 = 2; x3) C1−1(x0 = 2, x1 = 0; x3) = C1(x0 = 2; x3) C2(x0 = 2, x1 = 0; x3).

This transformation does not decrease the number of gates, but decreases the number of controls

in the gates, resulting in reduction of the quantum simulation cost from 16 to 12 (for that part).

Further, the second class templates can be applied to the pairs of gates 4 and 6, and 7 and 12.

However, in order to apply them, the moving rule has to be used to bring the gates together. These

two applications lead to the circuit of the form illustrated in Figure 5B. In that circuit, the first

and the seventh gates satisfy conditions for the first template and they can be moved together

using the moving rule. Application of the first class template to the first and the seventh gates of

the circuit in Figure 5B leads to the circuit depicted in Figure 5C. Finally, once no other circuit

simplification can be found, the gates are expanded (similarly to the middle circuit in Figure 2)

and the templates from the classes 1 and 2 are used to simplify the expanded circuit. This leads to

the circuit with quantum simulation cost 96, illustrated in Figure 5D. We have some evidence of

further simplification of this circuit once some new templates are introduced and properly applied.

19

C2

2

3

1

0x

x
x
x

2

1

C1

2

C1

2

2

C1

2

2

2

2

C2

2

C2

2

1

2

C2

1

2

2

C2

C1

2

2

2

1

C2

2

C2

1

2

1

1

C1

2

1

C2

C2

1

C2

2

1 C1

2

C2

1

2

3

1

0x

x
x
x

2

C1

2

C2

0

2

C1

2

2 2

C2

2

C2

2

1

2

C1

0

2

C2

C1

2

2

2

1

C2

2

C2

1

2

1

1

C1

2

0

C1

C2

1

C2

2

1 C1

2

C2

1

2

3

1

0x

x
x
x

2

C2

0

2

C1

2

2 2

C2

2

C2

2

1

2

C1

0 C1

2

2

2

1

C2

2

C2

1

2

1

1

C1

2

0

C1

C2

1

C2

2

1 C1

2

C2

1

2

3

1

0x

x
x
x

C1 C2 C2

1

C1

C1

1

C2 C2

1 1

1

C1C1

C2

1

C2

1 C1 C2

1C2

C1

C2

C1

C1 C1

C1 C2 C2

C1 C2

C2

C1 C2

1

1

1

1

1 1

1

1

1

1

1

1 1

1

1 1

1

1 1

A:

B:

C:

D:

Figure 5: The simplification steps.

20

9 Conclusion

This paper introduces a simple heuristic algorithm for the synthesis of quantum MVL reversible

circuits composed of MVL reversible gates based on the ideas of De Vos et al. [18] that are one

possible generalization of binary Toffoli gates [17]. While the initial results are quite promising

there is considerable need and scope for further research.

In earlier binary work [12], we presented a similar heuristic algorithm and then gave a template-

based reduction procedure that can significantly reduce the size of the circuit. We are currently

working on templates for the MVL case. Also, while we were able to find quite a reasonable circuit

for a ternary full adder as a reversible circuit, work is needed to identify a general procedure for

embedding an irreversible specification within a larger reversible specification so that the resulting

reversible circuit is minimal, or at least near-minimal. This is an open question for both binary

and MVL problems.

The basic reversible gates considered here are only one possible generalization of Toffoli gates, and

there are many other MVL reversible gates that could be considered. In particular, we next plan

to embed the MVL Fredkin gate [6] into the synthesis algorithm, as its quantum simulation cost

does not increase as we go from the binary to MVL case. Mod-sum based reversible gates may

also be considered.

The usefulness of this work depends on the efficient realization of the basic reversible gates. Our

preliminary investigation shows that the C1, C2 and N gates and their controlled counterparts

will have quite reasonable quantum logic realizations. The D and E type gates would seem to be

somewhat more expensive.

Finally, the synthesis algorithm presented here is greedy and heuristic. We are extending the ap-

proach to use back-tracking to further improve the quality of the solution. We are also considering

an approach which does not necessarily process the input/output patterns in order.

21

References

[1] IBM’s test-tube quantum computer makes history. Technical report, IBM T.J.

Watson Research Center, http://researchweb.watson.ibm.com/resources/news/

20011219 quantum.shtml, Dec. 2001.

[2] Anas Al-Rabadi. New multiple-valued galois field sum-of-product cascades and lattices for

multiple-valued quantum logic synthesis. In 6th International Symposium on Representations

and Methodology of Future Computing Technologies, pages 171–182, March 2003.

[3] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVinchenzo, N. Margolus, P. Shor, T. Sleator,

J. A. Smolin, and H. Weinfurter. Elementary gates for quantum computation. The American

Physical Society, 52:3457–3467, 1995.

[4] C. H. Bennett. Logical reversibility of computation. IBM J. Research and Development,

17:525–532, November 1973.

[5] R. Feynman. Quantum mechanical computers. Optic News, 11:11–20, 1985.

[6] E. Fredkin and T. Toffoli. Conservative logic. International Journal of Theoretical Physics,

21:219–253, 1982.

[7] Richard Hughes et al. Quantum computing roadmap. Technical report, University of Cal-

ifornia for the National Nuclear Security Administration, of the US Department of Energy,

http://qist.lanl.gov/, Dec. 2002.

[8] Mozammel H. A. Khan, Marek A. Perkowski, and Pawel Kerntopf. Multi-output galois field

sum of products (gfsop) synthesis with new quantum cascades. In International Symposium

on Multi-Valued Logic, pages 146–153, May 2003.

[9] R. Landauer. Irreversibility and heat generation in the computing process. IBM J. Research

and Development, 5:183–191, 1961.

22

[10] D. Maslov. Reversible Logic Synthesis. PhD thesis, University of New Brunswick, Fredericton,

Canada, October 2003.

[11] D. Maslov, G. Dueck, and M.Miller. Simplification of Toffoli networks via templates. In

Symposium on Integrated Circuits and System Design, pages 53–58, September 2003.

[12] D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based algorithm for reversible

logic synthesis. In Proceedings of the Design Automation Conference, pages 318–323, June

2003.

[13] M. Miller, G. Dueck, and D. Maslov. A synthesis method for MVL reversible logic. In

International Symposium on Multiple-Valued Logic, Toronto, Canada, May 2004. Accepted.

[14] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge

University Press, 2000.

[15] P. Picton. Modified Fredkin gates in logic design. Microelectronics Journal, 25:437–441, 1994.

[16] P. Picton. A universal architecture for multiple-valued reversible logic. MVL Journal, 5:27–37,

2000.

[17] T. Toffoli. Reversible computing. Tech memo MIT/LCS/TM-151, MIT Lab for Comp. Sci,

1980.

[18] A. De Vos, B. Raa, and L. Storme. Generating the group of reversible logic gates. J. of

Physics A: Mathematical and General, 35:7063–7078, 2002.

[19] Victor V. Zhirnov, Ralph K. Kavin, James A. Hutchby, and George I. Bourianoff. Limits to

binary logic switch scaling - a gedanken model. Proceedings of the IEEE, 91(11):1934–1939,

November 2003.

23

gates C1, CN C1, C1, N, C1, C2, N,

CC1, CN CC1, CN CC1, CC2, CN

0 1 1 1 1

1 4 6 8 12

2 13 31 52 93

3 39 130 280 597

4 115 498 1,342 3,224

5 326 1,777 5,692 15,042

6 897 5,924 20,992 57,951

7 2,395 18,089 63,292 144,039

8 6,107 47,849 128,159 127,056

9 14,660 99,576 118,635 14,750

10 32,268 126,981 23,516 115

11 62,145 58,192 906

12 96,237 3,795 5

13 97,705 31

14 43,902

15 5,816

16 243

17 7

Avg. 11.97 9.39 8.11 7.16

Table 3: Synthesis of the optimal circuits.

24

C2

x x+

0 2

1 0

2 1

Table 4: MVL gate C2.

CC2

x y x+ y+

0 0 0 0

0 1 0 1

0 2 0 2

1 0 1 2

1 1 1 0

1 2 1 1

2 0 2 0

2 1 2 1

2 2 2 2

Table 5: MVL gate CC2.

D E

x x+ x+

0 0 1

1 2 0

2 1 2

Table 6: MVL gates D and E.

25

transform choice

0→ 1 C1, E

0→ 2 C2, N

1→ 0 C2, E

1→ 2 D

2→ 0 C1, N

2→ 1 D

Table 7: Gate application choices.

(a) (b) (c)

xy x+y+ xy x+y+ xy x+y+

00 21 22 21 22 22

01 20 20 20 20 20

02 22 21 22 21 21

10 12 12 12 12 12

11 10 10 10 10 10

12 11 11 11 11 11

02 02 02 02 02 02

21 00 00 00 00 00

22 01 01 01 01 01

Table 8: Synthesis example.

26

Gates Algorithm Algorithm Optimal

F only F and F−1

0 1 1 1

1 24 24 24

2 301 315 335

3 2,395 2,593 3,407

4 11,743 12,954 25,255

5 34,755 39,061 114,095

6 72,217 80,699 187,569

7 97,192 103,663 32,173

8 81,978 79,099 21

9 43,886 34,338

10 14,849 8,612

11 3,246 1,437

12 293 84

Avg. 7.11 6.92 5.60

Table 9: Synthesis of all 2× 2 3-valued reversible functions.

27

x2 x1 x0 carry sum

0 0 0 0 0

0 0 1 0 1

0 0 2 0 2

0 1 0 0 1

0 1 1 0 2

0 1 2 1 0

0 2 0 0 2

0 2 1 1 0

0 2 2 1 1

1 0 0 0 1

1 0 1 0 2

1 0 2 1 0

1 1 0 0 2

1 1 1 1 0

1 1 2 1 1

1 2 0 1 0

1 2 1 1 1

1 2 2 1 2

2 0 0 0 2

2 0 1 1 0

2 0 2 1 1

2 1 0 1 0

2 1 1 1 1

2 1 2 1 2

2 2 0 1 1

2 2 1 1 2

2 2 2 2 0

Table 10: 3-valued 3-bit full adder.

28

