
Templates for Toffoli Network Synthesis

Dmitri Maslov
Faculty of Computer Science
University of New Brunswick
Fredericton, NB, E3B 5A3

Canada
dmaslov@unb.ca

Gerhard W. Dueck
Faculty of Computer Science
University of New Brunswick
Fredericton, NB, E3B 5A3

Canada
gdueck@unb.ca

D. Michael Miller
Dep. of Computer Science

University of Victoria
Victoria, BC, V8W 3P6

Canada
mmiller@csr.uvic.ca

ABSTRACT
Reversible logic functions can be realized as networks of Tof-
foli gates. The synthesis of To�oli networks can be divided
into two steps. First, �nd a network that realizes the desired
function is determined. Second, transform the network such
that it uses fewer gates, while realizing the same function.
This paper addresses the second step. Transformations are
accomplished via template matching. The basis for a tem-
plate is a network with m gates that realizes the identity
function. If a sequence in the network to be synthesized
matches more than half of a template, then a transforma-
tion reducing the gate count can be applied. All templates
for m � 7 are described in this paper.

Keywords
Reversible Logic, Quantum Circuits, Templates, Minimiza-
tion

1. INTRODUCTION
Reversible logic is an emerging research area. Interest in
reversible logic is sparked by its applications in quantum
computing, low-power CMOS, nanotechnology, and optical
computing. The synthesis of reversible circuits di�ers sig-
ni�cantly from synthesis using traditional irreversible gates.
Two restrictions are added for reversible networks, namely
fan-outs and back-feeds are not allowed. The only possible
structure for a reversible network is a cascade of reversible
gates. The most frequently used gates are the To�oli gate
[13] and the Fredkin gate [4]. The To�oli gate inverts a sin-
gle bit if the AND of a set of control lines is 1. The Fredkin
gate interchanges two bits if the AND of a set of control
lines is 1. The formal de�nition is given in Section 2.

Only a few synthesis methods have been proposed for re-
versible logic. Suggested methods include: using To�oli
gates to implement an ESOP (EXOR sum-of-products) [10],
exhaustive enumeration [12], heuristic methods that itera-
tively make the function simpler (simplicity is measured by

IWLS2003 Laguna Beach, CA

the Hamming distance [2] or by spectral means [8]), and
transformation based synthesis [5], among others. Some
methods use excessive search time, others are not guaran-
teed to converge, and some require many additional outputs
(garbage). We follow the two-step approach suggested in
[9]. First a network for the given function is found. The al-
gorithm for this step is guaranteed to converge. In fact, the
algorithm is very fast. Improvements on a naive algorithm
are described in [9]. The second step consists of applying
transformations which reduce the number of gates. In this
paper we describe the templates used for such transforma-
tions in detail.

2. PRELIMINARIES
An n-input n-output function (gate) is called reversible if,
and only if, it maps each input instance to a unique output
instance. In other words, a reversible function (gate) per-
mutes the elements of its domain. In practice, not all of the
n! possible reversible functions can be realized as a single re-
versible gate. Several reversible gates have been proposed.
However, we will only deal with To�oli gates in this paper.

Definition 1. For the set of domain variables fx1; x2; :::; xn
the generalized To�oli gate has the form TOF (C; t), where
C = fxi1 ; xi2 ; :::; xikg; t = fxjg and C [t = ;, and it maps
the Boolean pattern fx01; x

0
2; :::; x

0
ng to fx01; x

0
2; :::; x

0
j�1; x

0
j �

xi1xi1 :::xik; x
0
j+1; :::; x

0
ng. The set C which controls the change

of j- th bit is called the set of control lines and t is called
the target.

In the literature, a subset of all generalized To�oli gates is
typically considered. The most popular are: the NOT gate
(TOF (;; xj)), a generalized To�oli gate which has no con-
trols; the CNOT gate (TOF (xi; xj))[3], which is also known
as a Feynman gate, a generalized To�oli gate with one con-
trol bit, and the To�oli gate TOF (xi1 +xi2 ; xj) (where \+"
denotes set union) [13], a generalized To�oli gate with two
controls. The three gates are illustrated in Figure 1, and
the gates with more controls are drawn similarly. Note that
the way the gates are drawn is a convention, which is not
related to the way the gates are implemented. Gates with
more than two controls are discussed in [6]. The set of gener-
alized To�oli gates is known to be complete (for example, see
[7]), in other words, any reversible function can be realized
as a cascade of To�oli gates. A regular synthesis method for
To�oli gate networks is discussed in [9].

target

control

control

NOT CNOT
(Feynman)

Toffoli

Figure 1: NOT, CNOT and To�oli gates

Due to probable technological restrictions, the synthesis of
reversible logic is done with no feed-back and no fan-out
[11]. This leaves the cascade structure as the only model
satisfying those conditions. Thus, we consider cascades of
To�oli gates.

Let the signal be propagated from left to right. The pictorial
representation of a network is shown in Figure 2. The cost
of a function is de�ned as the number of gates in circuit
realizing it (S for a network in Figure 2).

in
pu

t

ou
tp

ut

ga
te

 1

line 1

line 2

...

line n

ga
te

 2

...

ga
te

 S

line 1

line 2

...

line n

Figure 2: The general structure for a network

3. TEMPLATES
In our previous work [9] we introduced templates as a tool
for network simpli�cation. In that work, a template consists
of two sequences of gates which realize the same function.
The �rst sequence of gates is to be matched to a part of
the circuit being simpli�ed and the second sequence is to be
substituted when a match is found. The templates were in
Figure 3 were identi�ed and classi�ed based on their simi-
larity.

In [9], the template matching procedure looks for the �rst
set of gates, including the initial match to the widest gate,
across the entire circuit. If all target gates are found, it at-
tempts to make them adjacent using themoving rule: gate
TOF (C1 ; t1) can be interchanged with gate TOF (C2 ; t2) if,
and only if, C1 \ t2 = ; and C2 \ t1 = ;. Adjacent gates can
match the template in the forward or reverse direction. The
matched gates are replaced with the new gates speci�ed by
the template. For a reverse match, the new gates are substi-
tuted in reverse order. Finally, if at any time two adjacent
gates are equal, they can be deleted, (deletion rule).

In this section, we give a formal classi�cation of the tem-
plates used in [9]. However, for a better understanding of
template classes, we introduce the following notation.

� the left hand side has a sequence of gates that is to
be replaced with the sequence given on the right hand
side;

4.6

4.1 4.2

4.5

4.3

4.4

,

,,

,

,,

,

,

3.1

2.1

1.1

3.2

2.2

1.2

3.3

5.1

Figure 3: Templates with 2 or 3 inputs.

� the controls of the gates are coded by sets Ci each of
which represents a set (maybe empty) of lines;

� the target sets ti each contain a single line.

All sets are disjoint: Ci \Cj = ;; Ci \ tk = ;; tl \ tk =
; 8i; j; k; l.

A �rst attempt to classify the templates results in the classes
listed below:

Class 1. This class unites and generalizes the templates 2.2,
4.1-4.3 (Figure 3) into a class (Figure 4a) with the formula:

TOF (C1 + C2 + t2; t1) TOF (C1 + C3; t2)

TOF (C1 +C2 + t2; t1) =

= TOF (C1 +C3; t2) TOF (C1 +C2 + C3; t1) (1)

Class 2. This class consists of templates 4.4-4.6 (Figure 3)
and their generalizations. The class is illustrated in Figure
4b and can be written as the following formula:

TOF (C1 + C2; t2) TOF (C1 + C3 + t2; t1)

TOF (C1 + C2; t2) =

= TOF (C1 +C3 + t2; t1) TOF (C1 +C2 + C3; t1) (2)

Class 3. This class (Figure 4c) includes templates 2.1, 3.1-
3.3 (Figure 3) and can be described by the formula:

TOF (C1 + C2 + t2; t1) TOF (C1 + C2 +C3; t1)

TOF (C1 +C3; t2) =

= TOF (C1 +C3; t2) TOF (C1 +C2 + t2; t1) (3)

Template 5.1 can be generalized, but this generalization is
not considered here since template 5.1 does not decrease the

,C
C
t
t

1

2

3

1

2

,

(a)

C

(b) (c)

C
C
t
t

1

2

3

1

2

C

Figure 4: To�oli templates.

number of gates in a network. However, use of a generaliza-
tion of this template may be bene�cial since it introduces
smaller gates that can be used by other templates. Even if
they are not used, it is bene�cial to have gates with fewer
controls, since for some technologies their costs are lower.
For instance, in quantum technology the cost of a To�oli
gate is 7 times higher than that of a CNOT gate [1]. As
the number of controls of the To�oli gate grows, the rela-
tion between the costs of generalized To�oli and CNOT gate
grows quadratically if no additional garbage is allowed and
linearly if garbage is allowed [1].

The correctness of formulas (1)-(3) is easily proven. A more
interesting question is whether the set of these three classes
of templates together with the two rules (moving rule, dele-
tion rule) is a complete set of simpli�cation rules for a se-
quence of three generalized To�oli gates over n lines. To
check this, we ran a program which exhaustively searches
all sequences of three gates built on three lines to check
whether the sequence can be reduced by means of templates
from the three classes and the two rules. This program found
no new templates. Thus, we conclude that the three classes
together with moving and deletion rules form the complete
simpli�cation tool for any To�oli network with up to three
gates.

3.1 Unification of Class 1 and Class 2 Tem-
plates

Classes 1 and 2 look similar. This similarity results in the
following description of the two classes as one:

� the �rst part of the template has 3 gates of the form
ABA, i.e. the �rst and the third gates are the same;

� if the following algorithm produces a valid network,
the template exists, otherwise it does not (correctness
can be easily proven):

{ Take the second gate and put it �rst in the second
part of the template.

{ On each line, there may be a logical AND con-
nection (�), an EXOR (�), or no connection with
the vertical line (denoted 2). We build the second
gate of the right hand side of the template by tak-
ing values from Table 1 using the symbols on that
line from A and B (since the table is symmetric,
there is no need to specify which argument is A
and which is B).

{ If the symbol E occurs during the building pro-
cess, the template cannot be built. It is easy to
see why, since if all � are on the same line, the

2 � �

2 2 � �

� � � 2

� � 2 E

Table 1: Second gate building process

moving rule is applicable, and the network can
be changed to the form AAB, after which appli-
cation of deletion rule transforms the network to
the form B.

{ In other cases, for TOF(t1+t2; t3) TOF(t1+t3; t2)
TOF(t1 + t2; t3) for example, the algorithm pro-
duces logical AND on the �rst line and nothing
at all on the other lines. This makes no sense.
That is, no reduction is possible for this sequence
of gates.

4. TEMPLATES - A NEW APPROACH
Although the template description in Section 3 is formal and
shorter (3 classes and 2 rules in comparison to 14 templates
with 2 rules as used before), it can be simpli�ed even further.
For this we need a new understanding of templates.

Let a size m template be a sequence of m gates (a circuit)
which realizes the identity function. Any template of size m
must be independent of templates of smaller size, i.e. for a
given template size m no application of any set of templates
of smaller size can decrease the number gates. The template
G0 G1::: Gm�1 can be applied in two directions:

1. Forward application: A piece of network that matches
the sequence of gates Gi G(i+1) modm::: G(i+k�1) modm

of the template G0 G1::: Gm�1 exactly, is replaced
with the sequence G(i�1) modm G(i�2) modm::: G(i+k) mod

without changing the network's output, where k 2

N;k � m

2 .

2. Backward application: A piece of network that matche
the sequence of gates Gi G(i�1) modm::: G(i�k+1) modm

exactly, is replaced with the sequence G(i+1) modm

G(i+2) modm : : :G(i�k) modm without changing the net-
work output, where k 2 N;k � m

2
.

These de�nitions of template application need a correctness
proof| the network output should not be changed for each
of the listed operations. Correctness can be veri�ed as fol-
lows. Note, that a reversible cascade that realizes a function
f read in reverse (from the outputs to the inputs) realizes
f�1, its inverse.

First, we prove the correctness of the forward application
of a template starting with element G0. The operation
for this case requires substitution of G0 G1::: Gk�1 with
Gm�1 Gm�2::: Gk. Since G0 G1::: Gm�1 realizes the iden-
tity function, Gk Gk+1::: Gm�1 realizes the inverse of the
function realized by G0 G1::: Gk�1. Therefore, read in
reverse order Gk Gk+1::: Gm�1 realizes inverse of the in-
verse, i.e. the function itself. Thus, the function realized
by G0 G1::: Gk�1 was substituted by itself, which does not
change the output of the network. Correctness of the re-
maining forward applications can be proven by using Lemma
1.

Correctness of all reverse applications follows from the proof
above and from the observation that the inverse of the iden-
tity function is the identity function.

Next, observe that a template can be used in both directions,
forward and backward as the formulas show. Also, we can
start using it from any element. Thus, it is better to think of
a template as a cyclic sequence. The correctness of viewing
a template as a cyclic sequence is proven by the following
Lemma.

Lemma 1. If a network G0 G1::: Gm�1 realizes the iden-
tity function, then for any k-shift,
Gk G(k+1) modm::: G(k�1) modm realizes the identity.

Proof. We prove the Lemma for 1-shift, G1 G2::: Gm�1 G0.
Then all k-shifts can be proven by applying the 1-shift k

times. The proof for a 1- shift follows from:

Id = G0 G1::: Gm�1

G0 Id = G0 G0 G1::: Gm�1

G0 = G1 G2::: Gm�1

Id = G0 G0 = G1 G2::: Gm�1 G0:

The condition k �
m

2
is used as we don't want to increase

the number of gates when a template is applied and equality
yields a simpler classi�cation scheme.

The following is a classi�cation of templates up to size 7.
We use the notation introduced in the previous section.

� m=1. Size 1 templates do not exist, since each gener-
alized To�oli gate produces a change of its input.

� m=2. There is one class of templates of size 2 (Figure
5a), and it is the deletion rule which is described by
the sequence (AA)

TOF (C1; t1) TOF (C1; t1):

� m=3. There are no templates of size 3.

� m=4. There is one class of templates (Figure 5b), the
moving rule from the previous section, which can be
written as follows (ABAB):

TOF (C1 + C2; C4 +C5) TOF (C1 + C3; C4 +C6)

TOF (C1 +C2; C4 +C5) TOF (C1 +C3; C4 + C6):

The set notation is used to describe the targets since
they may intersect or not, which is impossible to de-
scribe in one formula using the ti notation for the tar-
gets. The upper template in Figure 5b has jC4j = 0
which results in jC5j = 1 and jC6j = 1, when the lower
has jC4j = 1 resulting in jC5j = 0 and jC6j = 0.

� m=5. Surprisingly, there is only class of template of
size 5 (Figure 5c), which unites the three earlier classes
(1)-(3) and includes templates 2.1-2.2, 3.1- 3.3 and
4.1-4.6 from Figure 3. The class can be written as
(ABABC):

TOF (C1 +C2 + t2; t1) TOF (C1 +C3; t2)

TOF (C1 +C2 + t2; t1) TOF (C1 +C3; t2)

TOF (C1 +C2 + C3; t1):

� m=6. There are two classes here (Figure 5d), and they
are described by formulas (ABACBC)

TOF (C1 + t2; t1) TOF (C1 +C2 + C3 + t1; t2)

TOF (C1 + t2; t1) TOF (C1 + C2 + t2; t1)

TOF (C1 + C2 + C3 + t1; t2) TOF (C1 + C2 + t2; t1)

and (ABACDC)

TOF (C1 + t2; t1) TOF (C1 + C2 +C3 + t1; t2)

TOF (C1 + t2; t1) TOF (C1 +C2 + t1; t2)

TOF (C1 + C2 + C3 + t2; t1) TOF (C1 + C2 + t1; t2):

Note, the two formulas for the classes look very simi-
lar, and, in fact using Fredkin gates, they can be gen-
eralized to form one very simple template FRE(C1 +
C2 + C3; t1 + t2) FRE(C1 + C2 + C3; t1 + t2) (where
FRE(C; t1+ t2) is a gate which swaps values of bits t1
and t2 if, and only if, set C has all ones on its lines),
but it is but we do not pursue this here as we are
restricting our attention to generalized To�oli gates.

� m=7. There are no templates of size 7.

For m > 7, the number of templates is expected to grow
very fast (exponentially). One way to reduce the number of
templates is to allow Fredkin gates.

To verify the correctness of the above classi�cation, we must
show no template of larger size can be reduced to a template
of smaller size.

� { The size 4 template is independent of the size 2
template, since no adjacent gates are equal.

� { The size 5 template is independent of the size 2
template, since no adjacent gates are equal.

{ The size 4 template can be applied to move gate
C anywhere in a template, but it does not allow
any simpli�cation of size a 5 template by smaller
templates.

� { Size 6 templates are independent of the size 2
template, since no adjacent gates are equal.

{ A size 4 template can be applied to interchange
gates A and C of template ABACBC only and
does not lead to any simpli�cation.

C
C
t
t

1

2

3

1

2

C

C
C
t

1

2

3

1

C
C
C
t
t

1

2

3

1

2

C

C
t

1

1

C
C
t
t

1

2

3

1

2

C

C
C
t
t

1

2

3

1

2

C

Figure 5: All templates for m � 7.

{ The size 5 template matches at most 2 gates of
template ABACBC, and therefore can not be ap-
plied.

4.1 Completeness
First of all, we wrote a program which builds all the 4-
input 4-output circuits of size 7 that realize the identity
function and tries to apply the templates. The program
result shows that the set of our 5 templates (AA, ABAB,
ABABC, ABACBC, ABACDC) is the complete set of tem-
plates of size 7 or less for 4 inputs and less.

The mathematical proof of completeness of this set for any
number of inputs is harder. For templates of size 2 it can be
done by hand, since there are not so many choices to look
at. For templates of size 4 and 5 the following lemma is
useful.

Lemma 2. A size m template has at most bm2 c di�erent
lines with EXOR signs.

Proof. Prove by contradiction. Suppose there are bn
2
c+

1 or more lines which contain EXOR sign. Then, by the
pigeon hole principle, there will be one line with one EXOR
sign only. Cut the cycle so that the gate with this EXOR,
TOF (C; t) comes �rst. Now, if we assign 1 to all xj 2 C,
the value of t changes to �t as the signal is propagated in the
template. Thus, the template does not realize the identity
function, which contradicts its de�nition.

Use of this Lemma allows us to say that all the templates
of size 4 have EXOR signs on either two lines (two signs on
one and two on the other) or 1 line (all 4 on 1 line). Thus,
an exhaustive search proof becomes reasonable. For the size
5 templates we can guarantee that they all will have only
two lines with EXOR.

5. EXPERIMENTAL RESULTS
We wrote programs to verify the correctness of our results,
build the new templates and apply them. The results of the
veri�cation program were discussed in above.

The program which simpli�es the networks works as fol-
lows. First, we found that it is convenient to store template
ABAB as a separate rule which helps to bring the gates to-
gether to match a template. Then, the circuit is simpli�ed
as follows. For the hierarchy of templates AA � ABABC
� ABACBC � ABACDC try to match as many gates of a
template as possible by looking ahead in the network and
using the moving rule. If a template can be applied, apply
it for the greatest application parameter k possible. After
applying any template start trying to apply the templates
in hierarchical order from the very beginning. If none of
the templates can be applied, the simpli�cation process is
�nished.

Example 1. We took a network for three bit adder pro-
duced by the synthesis algorithm presented in [9] (Figure 6)
and applied our program to simplify it. As expected, the
program used a size 5 template and matched 3 gates. Thus,
they were substituted by the remaining 2 gates of the tem-
plate read in reverse order. This circuit is optimal, since no
further reduction is possible. Suppose, an adder can be re-
alized with 3 gates or less. Then, addition of these gates to
the end of the built size 4 cascade results in a new template
which was proven (by enumeration) not to exist for size 7
and less and four inputs.

6. CONCLUSION
Several authors considered network transformations. Shende
et. al [12] used several 4-bit circuit equivalencies to be able
to rewrite gates in a di�erent order. Their circuit equiva-
lence rules were not proposed for circuit simpli�cation. In
our work we covered and classi�ed all the templates they
had, generalized the notion of template, and showed how to
use them to simplify networks. Iwama, Kambayashi, and
Yamashita [5] introduced some circuit transformation rules,
which mainly served to bring a network to a canonical form
and thus, stating that the set of transforms is complete.
However, their approach uses unlimited garbage, whereas in
our approach no garbage is allowed. One of the transforms
in [5] was proposed for circuit simpli�cation, but the actual
application procedure was not described. Our work gener-
alizes and classi�es the templates used by [5], and adds new
classes. We also show a way of using templates for network
simpli�cation and have implemented it.

a

b

c

 d
(constant 0)

garbage

carry

sum

propogate

A B C

Figure 6: Optimal circuit for a full adder.

The larger the set of templates, the more reductions can
be done. For instance, if for some natural number k k-
optimality is de�ned as the impossibility of simplifying a
network with size 2k � 1 and less templates, then all the
templates of size n � 2n+1 � 1 and less form the complete
simpli�cation tool for the synthesis method provided in [9].
The theoretical algorithm from [9] produces a valid network
with at most n � 2n gates, therefore if this network is not
optimal and was not simpli�ed by all templates with size
n � 2n+1 � 1 and less, not all the templates are listed. Thus,
we come to a contradiction which proves the statement.

In this work we built the set of templates and showed a pro-
cedure allowing us to create 4-optimal circuits for networks
with number of inputs less than or equal to 4. We general-
ized these templates and proposed them as the set of rules
which produces a 4-optimal network out of those given. The
template tool was generalized and shown in a readily usable
form.

7. REFERENCES
[1] A. Barenco, C. H. Bennett, R. Cleve, D. P.

DiVinchenzo, N. Margolus, P. Shor, T. Sleator, J. A.
Smolin, and H. Weinfurter. Elementary gates for
quantum computation. The American Physical
Society, 1995.

[2] G. W. Dueck and D. Maslov. Reversible function
synthesis with minimum garbage outputs. In
International Symposium on Representations and
Methodology of Future Computing Technologies, March
2003.

[3] R. Feynman. Quantum mechanical computers. Optic
News, pages 11{20, 1985.

[4] E. Fredkin and T. To�oli. Conservative logic.
International Journal of Theoretical Physics, pages
219{253, 1982.

[5] K. Iwama, Y. Kambayashi, and S. Yamashita.
Transformation rules for designing cnot-based
quantum circuits. In Proceedings of the Design
Automation Conference, New Orleans, Louisiana,
USA, June 10-14 2002.

[6] D. Maslov and G. W. Dueck. Asymptotically optimal
regular synthesis of quantum networks. Submitted to
International Workshop on Logic Sysnthesis, May
2003.

[7] D. Maslov and G. W. Dueck. Garbage in reversible
design of multiple output functions. In 6th

International Symposium on Representations and
Methodology of Future Computing Technologies, March
2003.

[8] D. M. Miller and G. W. Dueck. Spectral techniques
for reversible logic synthesis. In 6th International
Symposium on Representations and Methodology of
Future Computing Technologies, March 2003.

[9] D. M. Miller, D. Maslov, and G. W. Dueck. A
transformation based algorithm for reversible logic
synthesis. In Proceedings of the Design Automation
Conference, 2003.

[10] A. Mishchenko and M. Perkowski. Logic synthesis of
reversible wave cascades. In International Workshop
on Logic Sysnthesis, June 2002.

[11] M. Nielsen and I. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press,
2000.

[12] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P.
Hayes. Reversible logic circuit synthesis. In ICCAD,
San Jose, California, USA, Nov 10-14 2002.

[13] T. To�oli. Reversible computing. Tech memo
MIT/LCS/TM-151, MIT Lab for Comp. Sci, 1980.

