

Augmented Sifting of Multiple-Valued Decision Diagrams

 D. Michael Miller Rolf Drechsler
 Department of Computer Science Institute of Computer Science
 University of Victoria University of Bremen
 Victoria, BC 28359 Bremen
 CANADA V8W 3P6 GERMANY
 mmiller@csr.uvic.ca drechsle@informatik.uni-bremen.de

Abstract

Discrete functions are now commonly represented by
binary (BDD) and multiple-valued (MDD) decision
diagrams. Sifting is an effective heuristic technique
which applies adjacent variable interchanges to find a
good variable ordering to reduce the size of a BDD or
MDD.

Linear sifting is an extension of BDD sifting where XOR
operations involving adjacent variable pairs augment
adjacent variable interchange leading to further
reduction in the node count. In this paper, we consider
the extension of this approach to MDDs. In particular,
we show that the XOR operation of linear sifting can be
extended to a variety of operations. We term the resulting
approach augmented sifting.

Experimental results are presented showing sifting and
augmented sifting can be quite effective in reducing the
size of MDDs for certain types of functions.

1. Introduction

BDDs [1][2][3][8][14][17][18] and MDDs [10][11] are
commonly used in a wide variety of applications. The
variable ordering can significantly affect the size of a
decision diagram and there has thus been considerable
work on determining good orderings. Sifting [15] is a
very effective technique applicable to BDDs and MDDs.*

The size of a BDD can be further reduced by a technique
called linear sifting [9]. In this approach, certain variables
are replaced by the XOR of variables so that the
realization of a system of functions F consists of a linear
prefilter made up of XORs that permutes the input space
to a BDD representing a system of functions G which
together realize the given system F at lower overall cost.
This is in fact the linearization scheme discussed by

The work reported in this paper was supported in part by a
Research Grant from the Natural Sciences and Engineering
Research Council of Canada.

Karpovsky [7] who gave an analytical solution applicable
to a system with a small number of inputs. Linear sifting
is a heuristic application of linearization applicable to
large problems.

The purpose of this paper is to examine the extension of
linear sifting to the MDD case. We consider mod-p sum
sifting which is based on replacing XOR by summation
mod-p and also augmented sifting where a variety of
extensions to XOR are considered.

2. Preliminaries

We consider 1 2(, ,...,),1 ,i nf x x x i m≤ ≤ a system of

totally-specified p-valued functions where the ix are also

p-valued. The functions are totally-specified so each ix
takes on all values 0…p-1. A particular function may take
on a subset of the values 0…p-1. In particular, we shall
consider the case of multiple-valued input, binary output
functions. We denote the mod-p sum as x y⊕ and use

() mod ,1 1,kx x k p k p= + ≤ ≤ − to denote the k possible
cyclic negations.

The type of function considered can be represented by a
multiple-valued decision diagram (MDD) which is a
directed acyclic graph (DAG) with up to p terminal nodes
each labelled by a distinct value 0,1,…,p-1. Every non-
terminal node is labelled by an input variable and has p
outgoing edges; one corresponding to each logic value.
These are termed the 0-edge, 1-edge, etc.

An MDD is ordered if the variables adhere to a single
ordering on every path in the graph, and no variable
appears more than once on any path from the root to a
terminal node. Finding a variable ordering to minimize
the number of nodes in an MDD is a critical issue.

A reduced MDD has no node where all p outgoing edges
point to the same node and no isomorphic subgraphs.
Clearly, no isomorphic subgraphs exist if, and only if, no
two non-terminal nodes labelled by the same variable,
have the same direct descendants. Throughout this paper
we assume all MDDs are reduced and ordered.

For a system of function (multiple-output problem), we
represent the functions by a single DAG with multiple top
nodes, a structure called a shared MDD. When p = 2, the
MDD structure becomes the well-known BDD.

We use cyclic negation as an edge attribute in our MDDs
as developed in [10][11] as a generalization of edge
negations in BDDs [1][13]. Every edge in an MDD
points to a function. When an edge has an associated
cyclic negation, it means that edge points to the cyclic
negation of the function rather than the function itself.
The representation is normalized so that there is no cyclic
negation on any 0-edge. Our MDDs always have a single
terminal node with value 0. Note that a cyclic negation
may be required for realizing a desired output function.

We note that the normalization process used in our MDDs
differs from that often used in BDDs [16]. We have
chosen the normalization rules for our package to best
accommodate different values of p and to allow for easier
extension to mixed-radix MDDs..

Figure 1 shows an MDD representing the sum (F1) and
carry (F2) for the addition of two 3-valued inputs. The
three edges from each non-terminal node are drawn solid
for the 0-edge, dashed for the 1-edge, and dotted for the 2-
edge. A number immediately to the right of an edge
indicates a cyclic negation associated with that edge.

Figure 1 MDD representing sum (F1) and carry (F2).

3. Sifting of BDDs and MDDs

Sifting is a very effective heuristic variable ordering
technique developed by Rudell [15] which is now
available in commonly used packages such as CUDD
[16].

3.1 Sifting of BDDs

The principal step in sifting is the interchange of a pair of
adjacent variables in the current variable ordering. The
key to the efficiency of sifting is that such a variable
interchange can be done as a local operation affecting
only nodes labelled by the two variables in question and
no others. Use of a unique table [3][16] makes these
nodes directly accessible.

In general terms, sifting proceeds as follows:

Sifting Procedure

i) select a variable y – a simple heuristic is to choose
the variable that labels the most nodes in the BDD,

ii) sift y to the bottom of the BDD by a sequence of
adjacent variable interchanges,

iii) sift y to the top of the BDD by a sequence of
adjacent variable interchanges,

iv) during steps (ii) and (iii) a record is kept of the
position of y that yields the smallest node count in
the BDD, so now sift y back down to that position,

v) repeat steps (i) to (iv) until each variable has been
sifted into the best position noting that once a
variable is selected for sifting, it is not selected a
second time.

There are !n orderings of n variables. Sifting examines
on the order of 2n orderings, yet does extremely well at
identifying good variable orderings.

In the above procedure, each variable is shifted to its 'best'
position. The whole process can be iterated until there is
no further improvement which is termed sifting to
convergence [16]. All sifting in this work is sifting to
convergence.

3.2 Sifting of MDDs

Sifting an MDD requires an efficient means of performing
adjacent variable interchange. Such a method was given
by the present authors in [11]. We here briefly outline
this method as it will be used in modified form to
implement mod-p sum and augmented sifting. Full detail
can be found in [11].

We consider the interchange of xi and xj where the former
immediately precedes the latter in the variable ordering
and assume for simplicity that all non-terminal nodes have
p descendants. For each node η labelled xi, matrix T is
constructed with Tqr set to

(a) the r-th descendant of the q-th descendant of η if
the q-th descendant points to a node labelled xj,

(b) the q-th descendant of η, otherwise.

Given T formed as described above, the new nodes
labelled xi are constructed using the columns of T to
determine the descendants and then using the nodes so
constructed as the descendants of the new node labelled xj.
In simplest terms, the required rearrangement is
accomplished by filling T by rows and then applying it by
columns. There are a number of implementation issues to
consider which are given in detail in [11].

Given this method for adjacent variable interchange,
sifting of MDDs is readily implemented using the same
overall approach as for the BDD case.

4. Linear Sifting of BDDs

Linear sifting was introduced by Meinel, Somenzi and
Theobold [9] and further discussed by Günther and
Drechsler [4][5][6]. In this extension to sifting, the
simple interchange of two adjacent variables ix and jx in

steps (ii) and (iii) of the procedure outlined above is
replaced by the following:

(a) Variables ix and jx are interchanged. Let 1k be the

number of nodes in the BDD after this interchange.

(b) Apply the linear transformation j i jx x x← ⊕ . Let

2k be the resulting number of nodes in the BDD.

(c) If 1 2k k≤ then the transformation is undone.

Undoing the transformation is accomplished by simply
reapplying it since it is its own inverse. Note that the
above is described in terms of XOR due to the
normalization rules we use for decision diagrams. The
original description in [9] is in terms of equivalence due
to different normalization rules. The concept is the same.

Figure 2 illustrates the two basic operations used in linear
sifting. (a) shows a BDD structure before transformation.
0-edges are solid and 1-edges are dashed. The nodes
labelled f00 through f11 are the top nodes of sub-DAGs
representing subfunctions (not shown). (b) shows the
effect of interchanging ix and jx which is to interchange

the subfunctions 01f and 10f . (c) shows the effect of

subsequently applying j i jx x x← ⊕ which is to

interchange the subfunctions 10f and 11f in (b).

The function represented by each of the diagrams in
Figure 2 is the same and the representations of the
subfunctions 00f through 11f are not affected by the
transformations. Hence both the interchange of variables
and the linear transformation are local operations affecting
only two adjacent levels in the BDD. Using cyclic
negations does not change this locality property.

Symmetry would suggest application of the transformation

i i jx x x← ⊕ should be considered. In fact, it is since

sifting will encounter the variables in the two possible
orderings. Trying both j i jx x x← ⊕ and i i jx x x← ⊕ for

each orientation duplicates effort.

5. Mod-p Sum and Augmented Sifting of MDDs

We next consider the extension of linear sifting to MDDs.
We first address the case of replacing XOR by the mod-p
sum which results in an approach we term mod-p sum
sifting. Based on that, we then consider other operations
as extensions to XOR. The full method, which we term
augmented sifting, allows for the consideration of multiple
operations during a single sifting process.

(a) initial structure

(b) after interchange of ix and jx

(c) after subsequent transformation j i jx x x← ⊕

Figure 2 Linear sifting transformations.

5.1 Mod-p Sum Sifting of MDDs

As the first step in extending the idea of linear sifting to
MDDs, we consider the replacement of XOR in

j i jx x x← ⊕ with the mod-p sum. A critical difference to

note is that while XOR is its own inverse, mod-p
summation is not its own inverse and to undo a mod-p
sum transformation we must apply mod-p subtraction.
Fortunately, both transformations can be implemented
using essentially identical matrix procedures.

In general, the interchange of the two variables ix and

jx results in the subfunction interchanges

 , ,0 , 1st tsf f s t s t p↔ ≠ ≤ ≤ −

Similarly, application of the transform

j i jx x x← ⊕ results in the subfunction substitutions

 , ,0 , 1st s s tf f s t p⊕← ≤ ≤ −

The interchange of two variables and the transformation

j i jx x x← ⊕ is implemented using the matrix based

procedure described above in Section 3.2.

The method proceeds as illustrated in Figure 3. In
general, consider a node γ labelled jx . We construct a

matrix T with p rows and p columns. For i=0,1,…, p-1,

(a) If the s-edge from γ leads to a node δ labelled ix ,

then for t=0,1,…,p-1, ,s t t⊕T is set to point to the

node pointed to by the t-edge of δ with the edge
cycles being the composition of the edge cycles on
the s edge from γ and the t edge from δ.

(b) If the s-edge from γ leads to a node δ not labelled

ix , then ,s t t⊕T is set to the s-edge from γ for

t=0,1,…,p-1.

(a) initial structure

(b) after interchange of ix and jx

(c) after transformation j i jx x x← ⊕

Figure 3 Mod-p sifting transformations.

Once T is constructed as above, the transformation is
made by setting each s-edge from γ, s=0,1,…,q-1 to point
to a node labelled ix whose t-edge, t=0,1,…,p-1, points to

the node pointed to by ,s t t⊕T . During this construction, the

edge cycle operations are normalised to ensure there is no
cycle operation on any 0-edge.

The complete transformation is accomplished by
performing the above for all nodes originally labelled .jx

In the same fashion as discussed above for variable
interchange, it is clear that this is a local transformation of
the MDD affecting only the ix and jx levels.

The same procedure is used for the reverse
transformation, i.e. to undo a transformation when it does
not improve the MDD node count. The difference is that
reference is made to ,s t tT e where the mod-p difference is

()mods t s t p p= − +e .

Once the variable currently being considered has been
sifted to the bottom and then to the top it must be
positioned to yield the smallest decision diagram. As
noted in step (iv) of the sifting procedure presented in
Section 3.1, for sifting, only a sequence of downward
variable interchanges is required.

For linear or mod-p sum sifting, an ordered record must
be kept of the j i jx x x← ⊕ transformations. Putting the

variable under consideration into the correct position,
requires the j i jx x x← ⊕ and variable interchanges be

undone in reverse order back to but not undoing the
interchanges and transformations that put the variable into
the best position during the sifting process. The
bookkeeping required is straightforward but the
computation in undoing the operations back to the best
position can be substantial and in general can be equal to
the computation required in the sifting down and up of the
variable. The latter is certainly the case when the original
position is optimal for the variable.

5.2 Other Operations

We confine our attention to p = 2, 3, 4. The extension to
higher values of p should be clear. Table 1 shows the sum
and difference operations modulo-p. The critical
properties for the work here are

(a) The operations are reversible so that a
transformation that does not reduce the size of a
decision diagram can be undone.

(b) The (0,0) entry is 0 which means the subfunction on
the 0-0 path does not move so the transformation of
the decision diagram is a local operation. Replacing
this subfunction with another could require a
normalization requiring edge operation changes
higher in the diagram thereby destroying the locality
of the transformation.

Given (a) and (b), XOR is the only choice when p = 2. If
we require just (a) and (b), there are a number of
alternatives to mod-p sum when p > 2. For example, for p
= 3, one alternative pair is shown in Table 2.

To limit the number of choices to a reasonable number
both in terms of the computation and the bookkeeping
required, we add a third constraint that the generalizations
of ⊕ must satisfy

(c) The first row and the first column of the table
defining ⊕ should contain 0, 1, …, p-1 in order.

Mod-p sum is then the only generalization of ⊕ for p = 3.
For p = 4, mod-4 sum is a proper generalization as are the
operations 1 2 3, ,⊕ ⊕ ⊕ listed in Table 3.

p=2

0 1

0 0 1

1 1 0

y
x y

x

⊕

0 1

0 0 1

1 1 0

y
x y

x

e

p=3

0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

y
x y

x

⊕

0 1 2

0 0 2 1

1 1 0 2

2 2 1 0

y
x y

x

e

p=4

0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

y
x y

x

⊕

0 1 2 3

0 0 3 2 1

1 1 0 3 2

2 2 1 0 3

3 3 2 1 0

y
x y

x

e

Table 1 Sun and difference mo-p for p=2, 3, 4.

0 1 2

0 0 2 1

1 2 1 0

2 1 0 2

y
x y

x

⊕
)

 and

0 1 2

0 0 2 1

1 2 1 0

2 1 0 2

y
x y

x

)e

Table 2 Alternative generalization for p = 3.

5.3 Augmented Sifting
Our augmented sifting method follows the same
computational procedure as linear sifting. The difference
is that while linear sifting for p = 2 need only consider
XOR operations between a pair of variables, for p = 3 or 4
our method tries each of the appropriate generalizations of
⊕ , and when they are different the corresponding
generalizations of e . Hence, for every adjacent variable
interchange while a variable is sifted to the bottom of the
MDD and then to the top, the augmented sifting method
tries transformations based on the operations:

p = 2: XOR;

p = 3: mod-3 sum, mod-3 difference;

p = 4: mod-4 sum, mod-4 difference, the 5 distinct
functions in Table 3.

At each step, the augmented sifting method chooses the
transformation (if any) from amongst those tried that
yields the greatest reduction in the MDD node count. The
implementation of all these transformations is as
described for mod-p sum in Section 5.1.

1 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

y
x y

x

⊕

1 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

y
x y

x

e

2 0 1 2 3

0 0 1 2 3

1 1 0 3 3

2 2 3 1 0

3 3 2 0 1

y
x y

x

⊕

2 0 1 2 3

0 0 1 3 2

1 1 0 2 3

2 2 3 0 1

3 3 2 1 0

y
x y

x

e

3 0 1 2 3

0 0 1 2 3

1 1 3 0 2

2 2 0 3 1

3 3 2 1 0

y
x y

x

⊕

3 0 1 2 3

0 0 2 1 3

1 1 0 3 2

2 2 3 0 1

3 3 1 2 0

y
x y

x

e

Table 3 Alternative operations for p=4.

6. Experimental Results

Augmented sifting has been implemented in the MDD
package discussed by the present authors in [11] and [12].
As noted above, cyclic negations are used. The MDDs
are build using recursive implementations of MIN and
MAX and unique and compute tables as discussed in [12]

We here present the results of applying the procedure to a
variety of functions using our MDD package on a Sun
Blade 1000 with one 750 MHz. UltraSPARC III CPU
with 512 Mb RAM. The binary examples presented for
comparison were also done with our MDD package with p
= 2 in which case augmented sifting is linear sifting.

p in out initial
size

sifted
size

mod-p
sifted
size

transfor-
mations

2 4 3 13 11 10 1
 6 4 32 21 17 1
 8 5 71 34 24 2
 10 6 150 50 31 3
 12 7 309 69 38 4
 14 8 628 91 45 5
 16 9 1267 116 52 6

3 4 3 22 15 9 2
 6 4 71 28 13 3
 8 5 219 45 17 4
 10 6 664 66 21 5

4 4 3 32 18 11 2
 6 4 133 34 16 3
 8 5 538 55 21 4

Table 4 Sifting and mod-p sifting of adder function.

Table 4 shows the results for p-valued addition of two n-
bit numbers where each example has 2n p-valued inputs
and n+1 p-valued outputs. The column labelled ‘initial
size’ is the number of MDD nodes for the input ordering

1 1 1 1, ,..., , , ,...,n n n na a a b b b− − that is the inputs of the two
numbers being added one following the other. The
column ‘sifted size’ is the number of MDD nodes after
sifting is applied. The variable ordering found by sifting
is , 1 1 1 1, , , ,..., ,n n n na b a b a b− − .

The column ‘mod-p sifted size’ is the node count after
mod-p sifting is applied. The node count is substantially
reduced by mod-p sifting with just a few transformations.

Sifting and mod-p sifting are clearly very effective for
adders since they are both symmetric in corresponding
positions for the numbers being added and also highly
dependent on the ⊕ operation. Augmented sifting gives
no further improvement for adders.

Multiplication is a difficult case for decision diagram
representation, and mod-p and augmented sifting do not
help. For example, multiplication of two 6-bit binary
numbers, a problem with 12 inputs and 12 outputs, has
1,158 nodes in the simple one number after the other
variable order, and 1,098 nodes after applying sifting.
Applying mod-p or augmented sifting yields the same
result as sifting with no transformations selected.

p n initial size mod-p
sifted
size

transfor-
mations

2 5 17 12 3
 6 24 16 6
 7 31 22 6
 8 38 29 8
 9 53 40 10
 10 64 48 11
 11 75 57 12
 12 90 66 16
 13 105 78 16
 14 120 94 19
 15 135 110 16
 16 150 121 22

3 2 6 5 1
 3 10 7 3
 4 14 11 3
 5 24 19 4
 6 36 29 5
 7 49 41 6
 8 62 53 7
 9 75 65 8
 10 88 77 9

4 2 7 6 1
 3 12 9 2
 4 17 13 3
 5 22 17 4
 6 39 33 5
 7 59 51 6
 8 80 71 7

Table 5 Mod-p sifting of summation functions.

p in out initia
l size

sifted
size

augmented
sifted size

transfor-
mations

2 4 3 13 11 10 1
4 2+ 3 12 12 6 2
4 2* 3 8 6 6 0
2 6 4 32 21 17 1
4 3+ 4 25 23 23 0
4 3* 4 15 9 9 0
2 8 5 71 34 24 2
4 4+ 5 65 35 15 2
4 4* 5 24 12 12 0
2 10 6 150 50 31 3
4 5+ 6 115 53 53 0
4 5* 6 35 15 15 0
2 12 7 309 69 38 4
4 6+ 7 264 68 23 3
4 6* 7 48 18 18 0
2 14 8 628 91 45 5
4 7+ 8 477 123 123 0
4 7* 8 63 21 21 0
(+ unsifted order conversion; * sifted order conversion)

Table 6 Binary and quaternary coded adders.

Table 5 shows the results for the summation of n p-valued
inputs. The number of outputs in each case is

log ()p n p ×  and is the p-valued representation of the

arithmetic sum of the inputs.

Table 6 is a comparison of the BDD size of binary adders
and the size of two distinct MDDs derived from each.
Each case has three rows. The first gives the results for
the binary adders which are those from Table 4. The
second row is for the MDD where each quaternary input is
derived from a pair of binary inputs from left to right
where the binary inputs are in the order

1 1 1 1, ,..., , , ,...,n n n na a a b b b− − , i.e. the digits of the first
number followed by the second which we call unsifted
order. The natural binary to quaternary conversion is used,
i.e. (00 0;01 1;10 2;11 3)→ → → →

The outputs are left as binary so the derived functions are
quaternary-input binary-output and do not represent the
quaternary-input, quaternary-output adder in Table 4.

The third row of the table is for the MDD constructed in
the same fashion but using the sifted variable order found
in the binary case which as noted above is

, 1 1 1 1, , , ,..., ,n n n na b a b a b− − .

A number of observations can be made. First it is clear
that basing the conversion of binary inputs to quaternary
inputs on the binary sifted order is better than using the
unsifted order. In particular, we conjecture the MDD
constructed from the sifted binary order has 3n nodes
whereas the corresponding linear sifted BDD has
7 4n − nodes where n is the number of bits in each of the
binary numbers being added..

We also note that augmented sifting is beneficial for the
BDDs (in fact linear sifting) and also for the MDDs

derived from the unsifted binary inputs when n is even.
Augmented sifting does not help the MDDs when n is odd
because the quaternary encoding combines the least
significant bit of a with the most significant bit of b which
precludes the transformations found in the even case
where this is not the situation.

It is also interesting to note that for the MDDs constructed
from the sifted binary order, augmented sifting of the
MDD itself is of no benefit. This is the situation because
the binary variable pairing used to construct the
quaternary inputs captures the linearity.

Table 7 (at the end of the paper) shows the results for a
number of commonly used benchmark problems. Three
representations are presented for each problem: the BDD
for the original binary problem, the 4-valued input,
binary-output MDD for the given variable order, and the
4-valued input, binary-output MDD for the variable order
found by sifting for the BDD.

Three scenarios are presented: (A) sifting followed by
augmented sifting, (B) sifting followed by mod-p sum
sifting (we show only the case where the result can differ
from scenario A, and (C) mod-p sum sifting not preceded
by regular sifting.

We note that in this paper we are not concerned with the
best way to transform a binary problem to a quaternary
one. They are here only used as a source of examples.
However, we do note that in general smaller MDDs arise
when the BDD sifted variable ordering is used. The
exceptions to this arise when this approach pairs variables
that are not in the support set of the majority of output
functions. For example, this results in the MDDs derived
for example e64 being larger than the BDD. The
quaternary pairing has in fact introduced variable
dependency not present in the original problem. That
situation must be avoided in the case where the objective
is to find a good conversion of a binary problem to
quaternary. Nevertheless, the BDD sifting order is a good
starting point.

7. Concluding Remarks

This paper has considered the augmented and mod-p sum
sifting of MDDs. The experimental results presented
indicate these approaches work well for certain classes of
functions such as adders and weight functions. We expect
they will work well for many 'arithmetic' types of
functions with the notable exception of multipliers.

In general, our results indicate mod-p sum sifting is as
effective as the more general augmented sifting while
requiring considerably less computation. The results also
indicate that as found in [5] for linear sifting of BDDs, it
is best to apply regular sifting followed by mod-p sum or
augmented sifting. The regular sifting determines a good
threshold by variable swapping after which
transformations are applied only when they further reduce
the node count.

Optimization of our implementations of sifting, mod-p
sum and augmented sifting is ongoing. At present, our
implementations are rather slow, especially in comparison
to a highly optimised package such as CUDD [17]. For
example, the problem apex1 (45 inputs and 45 outputs)
treated as binary requires 1.8 CPU sec. for sifting and 4.8
sec. for augmented (linear) sifting using our package.
When apex1 is converted to a quaternary problem, sifting
takes on the order of 1.7 sec. and mod-p sum sifting takes
about 2.5 sec. Augmented sifting for this examples takes
about 23 sec. We have found that mod-p sum sifting takes
on the order of 2 to 5 times longer than sifting whereas
augmented sifting takes on the order of 7 to 10 times
longer than mod-p sum sifting.

In contrast, the time required to read and sift apex1 using
CUDD is negligible on the same machine. A major part
of the difference is that our package treats a BDD as a
special case of an MDD which leads to a slower
implementation due to the flexibility required, e.g. a
variable number of edges from each node, cyclic negation
as opposed to simple binary negation etc.

The MDD package used in this work is available at
www.csr.uvic.ca/~mmiller/MDD.

References

[1] K. S. Brace, R L. Rudell and R. E. Bryant, “Efficient
implementation of a BDD package,” Proc. Design
Automation Conference, pp. 40-45, 1990.

[2] R. E. Bryant, “Graph-based algorithms for Boolean
function manipulation,” IEEE Trans. on Computers, V. C-
35, no. 8, pp. 677-691, 1986.

[3] R. Drechsler and D. Sieling, “Binary decision diagrams in
theory and practice,” Int. Journal on Software Tools for
Technology Transfer, 3, pp. 112-136, 2001.

[4] W. Günther and R. Drechsler, “Linear transformations and
exact minimization of BDDs,” IEEE Great Lakes
Symposium on VLSI, pp. 325-330, Lafayette, LA, Feb.
1998.

[5] W. Günther and R. Drechsler, “BDD minimization by
linear transformations,” Conf. on Advanced Computer
Systems, pp. 525-532, Szczecin, Poland, Nov. 1998.

[6] W. Günther and R. Drechsler, “Minimization of BDDs
using linear transformations based on evolutionary
techniques,” IEEE International Symposium on Circuits
and Systems, pp. I:387-390, Orlando, FL, May 1999.

[7] M. G. Karpovsky, Finite Orthogonal Series in the Design
of Digital Devices, John Wiley and Sons., 1976.

[8] H. T. Lau and C.-S. Lim, “On the OBDD representation of
general Boolean functions,” IEEE Trans. on Comp., C-41,
No. 6, pp. 661-664, 1992.

[9] C. Meinel, F. Somenzi, and T. Theobold, “Linear sifting of
decision diagrams,” Proc. Design Automation Conference,
pp. 202-207, 1997.

[10] D. M. Miller, “Multiple-valued logic design tools,”
(Invited Address) Proc. 23rd Int. Symp. on Multiple-
Valued Logic, pp. 2-11, May 1993.

[11] D. M. Miller and R. Drechsler, “Implementing a multiple-
valued decision diagram package,” Proc. 28th Int. Symp.
on Multiple-Valued Logic, pp. 52-57, May 1998.

[12] D. M. Miller and R. Drechsler, “On the construction of
multiple-valued decision diagrams,” Proc. 32nd Int. Symp.
on Multiple-Valued Logic, pp. 245-253, May 2002.

[13] S. Minato, N. Ishiura and S. Yajima, “Shared binary
decision diagrams with attributed edges for efficient
Boolean function manipulation,” Proc. ACM/IEEE Design
Automation Conference, pp. 52-57, 1990.

[14] S. Minato, “Graph-based representations of discrete
functions,” Proc. IFIP WG 10.5 Workshop on the
Application of Reed-Muller Expansion in Circuit Design,
pp. 1-10, 1995.

[15] R. Rudell, “Dynamic variable ordering for ordered binary
decision diagrams,” Proc. IEEE/ACM ICCAD, pp. 43-47,
1993.

[16] F. Somenzi, “CUDD: CU Decision Diagram Package,”
http://bessie.colorado.edu/~fabio/ CUDD

[17] F. Somenzi, “Efficient manipulation of decision diagrams,”
Int. Journal on Software Tools for Technology Transfer, 3,
pp. 171-181, 2001.

[18] A. Srinivasan, T. Kam, S. Malik, and R.E. Brayton,
“Algorithms for discrete function manipulation,” Proc.
ICCAD, pp. 92-95, 1990.

 Scenario A Scenario B Scenario C
example p in out initial

size
sifted
size

augmented
sifted size

trans.

mod-p
sifted
size

trans.

direct mod-
p sifted size

trans.

alu2 2 10 8 114 60 60 0 60 0
 4 5+ 8 90 54 53 1 54 0 54 0
 4 5* 8 48 48 48 0 48 0

alu4 2 14 8 1093 570 540 3 430 7
 4 7+ 8 786 573 573 0 573 0
 4 7* 8 408 381 381 0 381 0

apex1 2 45 45 4876 1307 1278 2 1344 21
 4 23+ 45 3081 874 873 1 873 1 873 3
 4 23* 45 933 874 874 0 874 2

apex2 2 39 3 5613 400 400 0 400 5
 4 20+ 3 3470 646 646 0 646 1
 4 20* 3 299 274 274 0 274 0

apex3 2 54 50 1044 904 896 2 895 4
 4 27+ 50 597 563 563 0 563 0
 4 27* 50 766 602 594 14 595 4 595 5

bw 2 5 28 112 99 99 0 99 2
 4 3+ 28 88 69 69 0 68 1
 4 3* 28 81 63 63 0 63 2

seq 2 41 35 2153 1201 1122 12 1156 23
 4 21+ 35 1300 857 853 3 857 0 880 2
 4 21* 35 933 857 843 1 843 1 843 1

e64 2 65 65 1444 129 129 0 129 0
 4 33+ 65 1019 592 582 3 582 3 593 7
 4 33* 65 162 162 162 0 162 0

duke2 2 22 29 769 369 338 4 347 25
 4 11+ 29 561 339 339 0 356 7
 4 11* 29 279 278 277 1 277 1 277 1

misex1 2 8 7 71 36 36 0 36 1
 4 4+ 7 47 25 25 0 27 1
 4 4* 7 33 33 33 0 33 0

misex2 2 25 18 114 82 79 1 80 1
 4 13+ 18 114 81 79 1 79 1 79 1
 4 13* 18 78 64 63 1 64 0 64 0

misex3 2 14 14 652 480 478 1 476 6
 4 14+ 14 433 321 321 0 321 0
 4 14* 14 318 317 317 0 317 0

sao2 2 10 4 126 86 79 3 70 11
 4 5+ 4 81 64 59 2 61 3 61 2
 4 5* 4 56 56 50 3 54 2 54 2

sn74181 2 14 8 626 564 560 1 560 1
 4 7+ 8 402 390 390 0 390 0
 4 7* 8 467 458 458 0 458 0

(+ unsifted order conversion; * sifted order conversion)

Table 7 Standard benchmark functions.

