
 Abstract

We present a framework for visualizing structural and
functional behavior in a HDL description. The intent is to
assist designers in module reuse. Our approach is based on
the perusal of the HDL code and employs signal and
function analysis upon which new views of the module are
based. A prototype software tool, VALET, which we are
developing is described. While our tool is specifically
targeted to VHDL descriptions, the overall approach can be
adapted to alternative HDLs.

1. Introduction

As described in [1], there are three commonly used
models for managing reuse of hardware intellectual
property (IP) blocks. In the IP-based reuse model, a
dedicated design team implements a component using
specific design for reuse rules. This component is shared by
different design teams. Sometimes, a technical department
is in charge of supporting new users of a component. In the
rework-based reuse approach, a block is designed for a
specific project and after completion a dedicated team re-
engineers the design to make it reusable and the component
is included in the company’s IP repository to make it
available to other design teams. Similarly, in the as-is reuse
model, a component is designed as part of a specific
development project and put in the company IP repository
without modification. The quality and reusability of the
component depends on the design effort of the specific
design team involved in the original project.

Using the first or second approachs, a design center may
achieve a high level of reusability of its IP, but investments
in resources, knowledge, time and reorganization are
required. For these reasons, the as-is reuse approach is often
followed and, unless specific discipline is enforced on using
design for reuse rules, the company IP repository ends up
including legacy designs. Legacy designs are components
implemented with no design for reuse in mind. They are
often poorly documented, but have valuable IP content.
Teams wanting to reuse designs need to identify the original
design intent directly from the component description.

Reusing an IP component means to select an appropriate
block from among the available components in the

repository. The objectives are to identify which component
best matches the requirements of a new project, and to
integrate it in the new design. Selecting a component from
a repository is a difficult task and many research works exist
on repository organization and automatic retrieval [2,3,4].
Integrating a component in a new design requires a detailed
knowledge of the component interface. Moreover, changes
must often be made so that the selected component will
meet the specifications of a new design. In this case,
knowledge of the component’s structure and function is
required.

Our research, progress on which is reported in this paper,
aims to aid designers in the tasks of identifying the original
design intent of legacy components and of acquiring
enough knowledge of a reused block to allow for
modification. We use a novel approach of analyzing
VHSIC Hardware Description Language (VHDL)
descriptions which allows a designer to investigate the
function associated with a description. Our emphasis is on
understanding the behavior of the hardware associated with
a synthesizable HDL description and not the HDL code
itself. The research reported here builts on our earlier
work[5].

This paper is organized as follows. In the next section we
review earlier research on the use and analysis of VHDL for
reuse. Section 3 describes our methodology and the
extraction of abstract concepts. Section 4 and 5 describe
two viewer interfaces available in our prototype tool, and in
session 6 the paper concludes with suggestions for further
research and development of the VALET tool.

2. Related work

A method for the reuse of VHDL components is
described in [6]. It is based on an object-oriented extension
of VHDL: Objective VHDL. A reuse management system
is presented which handles classification, modification,
storage and retrieval of reusable components. No explicit
analysis of the VHDL description is performed but specific
features of Objective VHDL are exploited for design reuse.

Other researchers [7,8] have analyzed VHDL code using
a technique called slicing which was first introduced by
Weiser [9] in the software-engineering domain. For a signal

A Visualization Framework for VHDL Analysis
C Costi and D.M. Miller

Department of Computer Science
University of Victoria, B.C. Canada

ccosti,mmiller@csc.uvic.ca

assignment line in a VHDL description, it is possible to
extract a slice which consists of all the code lines which
directly or indirectly affect the assignment execution and
value. The slice represents executable VHDL code which
behaves like the original code with respect to the chosen
signal assignment. The authors showed that slicing may be
used to extract a portion of code to be reused and to identify
code which is influenced by a modification. While slicing
explicitly identifies relation among lines of code, no
interpretation of the meaning of the code is obtained.

A more semantic driven approach to VHDL code analysis
is presented in [10]. The goal is to identify properties of the
final circuit from the synthesis and testability points of view.
The analyses presented identify signals which are
implemented as memory elements in the final circuit, and
signals that can be used to propagate test patterns through a
portion of the design. These analyses cannot be directly used
to understand the function of the component.

Understanding VHDL code is the goal of the research
work reported in [11] where a VHDL reverse-engineering
tool-set called VYPER! is presented. In VYPER!, a set of
interfaces graphically represent information about the
VHDL code including: (i) the control flow of concurrent
statements; (ii) the control structure of sequential
descriptions, and (iii) the module hierarchy. By means of
hyperlinks, the designer may readily investigate the VHDL
code and search for information which is necessary to reuse
or modify the components under analysis. The goal is to help
designers in analyzing and understanding the code itself and
there is no attempt to identify or assist designers in
understanding what function the VHDL code describes.

3. Proposed methodology

The goal of our approach is to assist designers in
understanding the functional behavior embedded in a
synthesizable VHDL description. Therefore, we are not
focused on helping designers in understanding the structure
of a VHDL description, but rather concentrate on techniques
which extract functional information. We have identified
classes of functional information as a set of abstract
concepts which may be directly extracted from VHDL
descriptions. An abstract concept represents a specific
behavioral pattern which may be commonly found in a
digital design. Considering static information, like control
and data dependencies, each process in an architecture
description, is decomposed into a set of primary abstract
concepts, called signal concepts. These signal concepts are
collected in groups to form larger concepts. Reviewing those
concepts assists designers in identifying functional behavior
in the VHDL description.

Manually inspecting the VHDL code to retrieve concepts
is a very difficult and time consuming activity, especially

when the design consists of hundreds or thousands of lines
of code. Moreover, concurrent statements in VHDL
introduce a high degree of complexity to the task since
relations amongst signals may be spread across many
different processes. Therefore, we are developing a
prototype software tool, VHDL Assistant Low Efforts Tool
(VALET), which assists designers in analyzing
synthesizable VHDL descriptions.

The structure of VALET is shown in Figure 1. The VHDL
Navigator serves as the central controller in the tool. Once a
component from the repository is loaded, it shows all VHDL
structural elements in the design including instances,
architectures, processes, ports and internal signals. From the
VHDL Navigator, a designer may invoke incremental
analyses which extract different abstract concepts.
Currently, the automatically extracted abstract concepts may
be examined using the target signal viewer and the module
viewer. The signal viewer shows all concepts which refer to
a specific output or internal signal which has been the target
of at least one assignment. The module viewer shows
concepts which interact to form a specific combinational or
sequential hardware behavior.

3.1 Signal concepts

An algorithm called signal analysis is executed on each
process in an architectural description to automatically
extract a set of signal concepts. A signal concept consists of
a target signal, a controller, a condition and a set V of values.
The controller is a predicate whose values define when and
which value in the set V is assigned to the target signal. The
controller may be an input or an internal signal, or an
expression like a relational expression or a function call. The
condition consists of a Boolean expression which must be
satisfied to enable the controller. The condition may be
always true, which means that the controller is always
active. Therefore the signal concept is always valid.
Moreover, the condition may include the edge of a clock
signal. Signal analysis recognizes a clock signal by using the
pattern rules described in the IEEE P1076.6 standards
document [12].

Figure 1. VALET structure

VHDL
Repository

VALET tool

Analyzer

VHDL
Navigator

Target
signal
viewer

Module
viewer

By examining a number of synthesizable VHDL
descriptions for different applications, we defined a set of
signal concept types which correspond to commonly found
signal usages. Each type is named after the activity of the
controller signal:

• Enabler. For a specific value or a range of values of the
controller, the target signal is assigned to a value. For
all other values of the controller there is no assignment
to the target signal.

• Set/reset. For a specific value or a range of values of
the controller, the target signal is assigned to a constant
value val. For all other values of the controller, and at
least one, a value which is not a constant is assigned to
the target signal.

• Tristate enabler. For a specific value or a range of val-
ues of the controller, the target signal is assigned to val-
ues different from high impedance. For all other values
of the controller, the target signal is assigned to high
impedance

• Tristate disabler. For a specific value or a range of val-
ues of the controller, the target signal is assigned to
high impedance. For all other values of the controller,
values different from high impedance are assigned to
the target signal.

• Input choicer. For some but not all values of the con-
troller, the target signal is assigned to a value different
from high impedance. For all other values of the con-
troller, there is no assignment to the target signal.

• Single assignment. For all possible values of the con-
troller, the target signal is assigned to the same value.

• Selector: For all possible values of the controller, the
target signal is assigned to some value.

• Partial selector. For some but not all values of the con-
troller, the target signal is assigned to some value.

Another special signal concept has been defined, called
logic net. It is composed of a target signal, a value and a
condition. It represents an assignment to a target signal
which does not depend on any predicate. The condition is
generally always true or represents a clock edge.

Considering a process, signal analysis extracts a set of
signal concepts by trying to assign one of the above signal
concept types to each target signal, predicate and condition.
Since some of the above type definitions overlap, the
classification is made in the order indicated above. That is,
as soon as a type match is identified, no further search is
performed. Note that given a target signal and a predicate,
more than one signal concept may exist in the extracted set
with that target and predicate. However, each of those signal
concepts differ from each other by the controller expression.

3.2 Larger concepts

Another analysis algorithm, called functional analysis,
examines the previously extracted signal concepts and
identifies, when possible, larger abstract concepts. By
looking at conditions of signal concepts belonging to
different processes in the same architecture, functional
analysis merges some of those concepts to form one of the
following concepts:

• Encoder: consists of an output o, a input i and an acti-
vation condition, i.e. a Boolean expression. For each
possible value of i a constant value is assigned o. The
number of bits in i is greater or equal to the number of
bits in o.

• Decoder: consists of an output o, a input i and an acti-
vation condition, i.e. a Boolean expression. For each
possible value of i a constant value is assigned o. The
number of bits in i is less than the number of bits in o.

• Multiplexer: consists of an output o, a selector s and an
activation condition, i.e. a Boolean expression. For at
least k possible values of s, o is assigned to a different

 where the set I is composed of all port input and
internal signals in the architecture. The value k is
defined by a designer using a parameter md which we
call multiplexer degree, , where
value(s) is the number of possible values of s. For md
equal to 1, the functional analysis tries to find a com-
plete multiplexer behaviour where for each value of s a
different signal is assigned to o. A designer may freely
choose md, between 0 and 1, provided k is greater than
or equal to 2.

• Demultiplexer: consists of an input i, a selector s and
an activation condition, i.e. a Boolean expression. For
at least k possible values of s, i is assigned to a different
target signal where the set O is composed of
all port output and internal signals in the architecture.
The value k is defined by a designer using a parameter
dd which we call demultiplexer degree,

, where value(s) is the number of
possible value assignments of s. For dd equal to 1, the
functional analysis tries to find a complete demulti-
plexer behaviour where for each value of s, i is
assigned to a different signal o. A designer may freely
choose dd, between 0 and 1, provided k is greater than
or equal to 2.

Intuitively, the above concepts represent combinational
behaviors that are commonly found in digital design circuits.
It is important to note that concepts recognized by the
functional analysis do not necessarily constitute only
combinational components which are actually synthesized.
In fact the identified abstract concept may represent a
behavior which is made up of separately synthesized
elements. For example the VHDL code in Figure 2 is

i I

k md values s()=

o O

k dd values s()=

synthesized by design compiler synthesis tool (Synopsys) as
combinational logic with two latches, while our functional
analysis identifies an encoder concept with target signal Z
and controller A.

4. Target signal viewer

The target signal viewer is an interface which allows
designers to analyze all identified abstract concepts for a
specific target signal.

A list of all target signals used in an architecture is
presented to the user. By selecting a target all recognized
abstract concepts associated with the specific target are
presented as a list (L). At this point, the user may investigate
the list L of abstract concepts using different methods.

4.1 Analysis of a specific abstract concept

The user can select a specific abstract concept in the list L
and view the type and the condition which activate the
concept. Moreover, the user can choose a specific value for
each controller and view the behavior of the concept, that is
which value is assigned to the target signal.

4.2 Filter and group by controller

The user can choose a controller C which is used by at
least one of the concepts in L and create a group G
containing only those concepts which have the controller C.
Once the group G is formed, the user can invoke the extra
controls recognition analysis which identifies new
predicates which control the activation of the abstract
concepts in the group. This analysis looks at conditions
associated with each abstract concept in G and at terms in
conditions which refer to one of the input or internal signals

in the group. Then, it identifies and classifies those signals
which satisfy one of the following condition:

• Extra selector. For each possible value of the signal, an
abstract concept in the group G is activated. Moreover,
all concepts in the group must be activated by at least
one value of the signal.

• Extra partial selector. For more than one but not all
possible values of the signal, an abstract concept in the
group G is activated. Moreover, all concepts in the
group must be activated by at least one value of the sig-
nal.

• Extra enabler. For a specific value or range of values of
the signal, all concepts in the group G are activated.

As the result of the extra control recognition analysis, the
group G is enriched by a set of extra control signals of types
extra selector, extra partial selector or extra enabler. At this
point, users may interact with the group by choosing values
for the controller C and each extra control signal and view
its behavior, that is which concept is activated and which
value is assigned to the target signal.

4.3 Equivalences

Except for a degenerate case, the list L of abstract
concepts contains concepts which refer to the same target
signal but have different controllers. It can happen that
different controllers influence the same set of assignments.
That is, a set of assignments to the target signal representing
a particular behavior may be seen as controlled by values of
either one controller or another controller. For example, two
different selector signal concept may be identified for the
fragment of VHDL code in Figure 3:

• Selector concept with target signal Z, controller A, con-
dition B=’0’ and values C AND D for A=’1’ and E for
A=’0’;

• Selector concept with target signal Z, controller B and
condition A = ‘1’ and values C AND D for B=’0’ and E
for B=’1’.

Obviously the two selector concepts represent the same
behavior, it is only the point of view, and in particular the
controller, that is changed.

An algorithm called equivalence analysis is part of the
target signal viewer. Once a user selects one or more abstract
concepts in L, the algorithm seeks to identify all possible
groups of concepts which form equivalent groups within the
group of selected concepts.

Figure 2. VHDL encoder example

ENTITY test_synop IS
PORT (A : in std_logic_vector(1 downto 0);

Z : out std_logic_vector(1 downto 0));
END test_synop;

ARCHITECTURE mixed OF test_synop IS
SIGNAL value : std_logic_vector (7 downto 0);
BEGIN

proc1: PROCESS (A)
BEGIN

IF (A = "01") THEN Z <= "11";
ELSIF (A = "10") THEN Z <= "00";
END IF;

END PROCESS;
proc2: PROCESS (A)

BEGIN
IF (A = "11") THEN Z <= "11";
ELSIF (A = "00") THEN Z <= "10";
END IF;

END PROCESS;
END mixed;

Figure 3. Equivalence

IF (A = ‘1) OR (B = ‘0’) THEN
Z <= C AND D;

ELSE
Z <= E;

END IF;

4.4 Custom group

The target signal viewer allows the user to manually
create and save a group which consists of a subset of abstract
concepts in L. After having examined the list L of abstract
concepts using one of the above methods, a user may decide
to create a personal group. In fact, the user may decide to
form a single group of concepts which have different
controllers but whose behaviors are in fact closely
associated and together provide a better understanding of the
module’s behavior. While adding concepts to such a group
the viewer interface advises a user when all possible
assignments for the target signal have been covered by the
concepts in the group.

5. Module viewer

The module viewer is an interface which shows the
results of the partition analysis algorithm for a specific
architecture. This algorithm considers the set S of all
extracted abstract concepts for a selected architecture and,
by looking at data dependencies among them, partitions the
set S into a set P of non overlapping subsets Pi of S. Each Pi
corresponds to one of the following module definition:

• Fsm module: is identified by abstract concepts with
state as target signal. State signal requires a memory
element to maintain its value, and its value is control-
led by its own previous value. It means that there is at
least one value of the state signal which, possibly
together with other signal values, determines a new
value for itself.The module also consists of a list of tar-
get signals controlled by the state signal.

• Complex register module: is identified by one or more
complex register signals which require memory ele-
ments to maintain their values. Moreover, there is at
least one value of one signal, which is different from
any complex register, which causes the value of a com-
plex register to depend on its previous value. But
unlike the fsm module, there is no value of any com-
plex register which determines a new value for itself.
Abstract concepts with complex register signals as tar-
get are collected in the module.

• Simple register module: consists of one or more simple
register signals which require memory elements to
maintain their values. Their values do not depend in
any way on their own previous values. Abstract con-
cepts with simple register signals as target are collected
in the module.

• Combinational module: consists of abstract concepts
with a target signal which does not require a memory
element.

Each module represents a different degree of complexity
of behavior. The module names have been chosen to
resemble a common hardware behavior associated with the

behavior identified. The user may select one of the Pi
modules and explore its content. Depending on the type of
module a different interface is provided which explicitly
indicates and describes the role of each of the module’s
input, output and internal signals. Each signal in the module
which is also a target in the architecture may be examined by
selecting it and open a target signal viewer for it.

6. Future work

The research reported upon here is ongoing. More work
is needed on the module viewer interface to show more
details for each module. We plan to provide a graph with
data dependencies and allow the user to navigate that graph
and to interrogate the module. Currently analyses are only
performed inside an architecture. We are interested in
examining interaction amongst multiple architectures.

7. References
[1] M.Keating, P.Bricaud, “Reuse Methodology Manual for

System-On-A-Chip”, Kluwer Academic Publisher, 1998.
[2] J.Altmeyer, S.Ohnsorge, B.Schurmann, “Reuse of Design

Objects in CAD Frameworks” in Proceedings International
Conference Computer Aided Design, 1994.

[3] M.Koegst, P.Conradi, D.Garte, M.Wahl, “A Systematic
Analysis of Reuse Strategies for Design of Electronic
Circuits” in Proceedings Design Automation and Test in
Europe, France 1998.

[4] A.Reutter, W.Rosenstiel, “An Efficient Reuse System for
Digital Circuit Design” in Proceedings Design Automation
and Test in Europe, Germany 1999.

[5] C.Costi,M.Miller, “A VHDL analysis environment for design
reuse” in Proceedings second International Forum on Design
Languages (FDL), Lyon, France 1999.

[6] C.Barnas,W.Rosenstiell, “Object-oriented reuse methodology
for VHDL” in Proceedings Design Automation and Test in
Europe, Germany 1999.

[7] M.Iwaihara, M.Nomura, S.Ichinose, H.Yasuura, “Program
Slicing on VHDL Descriptions and Its Applications” in
Proceedings 3rd Asian Pacific Conference Hardware
Description Languages, Bangalore 1996.

[8] E.M.Clarke, M.Fujita, S.P.Rajan, T.Reps, S.Shankar, T.
Teitelbaum, “Program Slicing for Design Automation: An
Automatic Technique for Speeding-up Hardware Design,
Simulation and Verification” Technical Report, Computer
Science Department University of Wilsconsin 1998.

[9] M.Weiser, “Program slicing” in IEEE Transactions on
Software Engineering, 1984.

[10] L.Baresi, C. Bolchini, D. Sciuto “Software Methodologies for
VHDL Code Static Analysis based on Flow Graphs” in
Proceedings Design Automation and Test in Europe, 1996

[11] Gunther Lehmann and Bernhard Wunder and Klaus D.
Muller-Glaser, “Basic Concepts for a HDL Reverse
Engineering Tool-Set” in Proceedings International
Conference Computer Aided Design, California 1996.

[12] IEEE, “IEEE P1076.6 Standard for VHDL Register Transfer
Level Synthesis,” New York, NY, I1999.

