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Abstract—The predominant melodic source, frequently the
singing voice, is an important component of musical signals. In
this paper, we describe a method for extracting the predominant
source and corresponding melody from ‘real-world” polyphonic
music. The proposed method is inspired by ideas from computa-
tional auditory scene analysis. We formulate predominant melodic
source tracking and formation as a graph partitioning problem
and solve it using the normalized cut which is a global criterion
for segmenting graphs that has been used in computer vision.
Sinusoidal modeling is used as the underlying representation.
A novel harmonicity cue which we term harmonically wrapped
peak similarity is introduced. Experimental results supporting
the use of this cue are presented. In addition, we show results for
automatic melody extraction using the proposed approach.

Index Terms—Computational auditory scene analysis (CASA),
music information retrieval (MIR), normalized cut, sinusoidal
modeling, spectral clustering.

I. INTRODUCTION

HE VOICE and melodic characteristics of singers are some
T of the primary features of music to which listeners relate.
Most listeners, independently of their music education, are ca-
pable of identifying specific singers even in recordings they have
not heard before. In addition, especially in pop and rock music,
the singing voice carries the main melodic line that can be used
to identify a particular song of interest.

Music information retrieval (MIR) is a field that has been
rapidly evolving over the past few years. It encompasses a wide
variety of ideas, algorithms, tools, and systems that have been
proposed to handle the increasingly large and varied amounts of
musical data available digitally. Typical MIR systems for music
signals in audio format represent statistically the entire poly-
phonic sound mixture [1], [2]. There is some evidence that this
approach has reached a “glass ceiling” [3] in terms of retrieval
performance.

One obvious direction for further progress is to attempt to in-
dividually characterize the different sound sources comprising
the polyphonic mixture. The singing voice is arguably one of the
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most important of these sources, and its separation and charac-
terization of the singing voice has a large number of applications
in MIR. Most existing query-by-humming systems [4], [5] can
only retrieve songs from a database containing music in symbolic
format. By performing pitch extraction on the extracted voice
signals, itis possible to perform query-by-humming in databases
of audio signals. Another potential application is singer identifi-
cation that is independent of the instrumentation or the “album”
effect [6]. Other possible applications include automatic accom-
paniment, music transcription, and lyrics alignment.

There has been limited work on singing voice separation from
monaural recordings. Many existing systems require predomi-
nant pitch detection in order to perform separation [7] or rely
on prior source models [8]. Other approaches are based on sta-
tistical methods such as independent component analysis (ICA)
and nonnegative matrix factorization (NMF) [9]. The nonsta-
tionarity of the singing voice and music signals as well as their
heavy computational requirements are some of the challenges
of applying statistical methods to this problem. Another related
research area is predominant pitch estimation and melody tran-
scription in polyphonic audio [10] in which only the pitch of the
predominant melody or singing voice is estimated.

In contrast, our approach attempts to directly separate the
prominent melodic source without first estimating the predom-
inant pitch based on basic perceptually inspired grouping cues
inspired by ideas from auditory scene analysis [11]. A separa-
tion of the leading voice is achieved by this approach since the
singing voice (if any) is usually the most prominent source of
the mixture. A description of an earlier version of the algorithm
and some of the experiments described in Section III-B appear
in [12].

A fundamental characteristic of the human hearing system
is the ability to selectively attend to different sound sources in
complex mixtures of sounds such as music. The goal of computa-
tional auditory scene analysis (CASA) [13] is to create computer
systems that can take as input a mixture of sounds and form pack-
ages of acoustic evidence such that each package most likely has
arisen from a single sound source. Humans use a variety of cues
for perceptual grouping in hearing such as similarity, proximity,
harmonicity, and common fate. For example, sound components
that change frequency by the same amount are more likely to
be grouped together as belonging to the same sound source
(common fate) than if they are changing independently. As an-
other example, two notes played by the same type of instrument
are more likely to be grouped together than two notes played
on different instruments (similarity). An excellent overview of
the current state of the art in CASA is provided in [14].
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Many of the computational issues of perceptual grouping for
hearing are still unsolved. In particular, considering the several
perceptual cues altogether is still an open issue [15], [16]. We
propose in this paper to cast this problem into a graph cut for-
mulation using the normalized cut criterion. This global crite-
rion for graph partitioning has been proposed for solving similar
grouping problems in computer vision [17].

The normalized cut is a representative example of spectral
clustering techniques which use an affinity matrix to encode
topological knowledge about a problem. Spectral clustering ap-
proaches have been used in a variety of applications including
high-performance computing, web mining, biological data,
image segmentation, and motion tracking.

To the best of our knowledge, there are few applications of
spectral clustering to audio processing. It has been used for the
unsupervised clustering of similar sounding segments of audio
[18], [19]. In these approaches, each audio frame is charac-
terized by a feature vector and a self-similarity matrix across
frames is constructed and used for clustering. This approach
has also been linked to the singular value decomposition of fea-
ture matrices to form audio basis vectors [20]. These approaches
characterize the overall audio mixture without using spectral
clustering to form and track individual sound sources.

Spectral clustering has also been used for blind one-micro-
phone speech separation [21], [22]. Rather than building specific
speech models, the authors show how the system can separate
mixtures of two speech signals by learning the parameters of
affinity matrices based on various harmonic and nonharmonic
cues. The entire short-time Fourier transform (STFT) magni-
tude spectrum is used as the underlying representation.

Closer to our approach, harmonicity relationships and
common fate cues underlie a short-term spectra-based sim-
ilarity measure presented by Srinivasan [23]. To integrate
time constraints, it is alternatively proposed in [24] to cluster
previously tracked partials to form auditory “blobs” according
to onset cues. Normalized cut clustering is then carried out
on these blobs. In contrast, a short-term sinusoidal modeling
framework is used in our approach. It results in more accurate
and robust similarity relations as well as significantly smaller
affinity matrices that are computationally more tractable.

Sinusoidal modeling is a technique for analysis and synthesis
whereby sound is modeled as the summation of sine waves
parameterized by time-varying amplitudes, frequencies, and
phases. In the classic McAulay and Quatieri method [25], these
time-varying quantities are estimated by performing an STFT
and locating the peaks of the magnitude spectrum. Partial
tracking algorithms track the sinusoidal parameters from frame
to frame, and determine when new partials begin and existing
ones terminate [26]. If the goal is to identify potential sound
sources, then a separate stage of partial grouping is needed.
Typically grouping cues such as common onsets and spectral
proximity are used.

In this paper, we use the term sound source tracking and
formation to refer to these two processes of connecting peaks
over time to form partials (tracking) and grouping them to form
potential sound sources (formation). They roughly correspond
to the sequential and simultaneous aspects of organization de-
scribed by Bregman [11]. Although frequently implemented as

separate stages as in [23] and [24], these two organizational
principles directly influence one another. For example, if we
have knowledge that a set of peaks belong to the same source,
then their correspondence with the next frame is easier to find.
Similarly, the formation of sound sources is easier if peaks can
be tracked perfectly over time. Methods that apply these two
stages in a fixed order tend to be brittle as they are sensitive to
errors and ambiguity.

To cope with this chicken-and-egg problem, we show how
both sound source tracking and formation can be jointly opti-
mized within a unified framework using the normalized cut cri-
terion. We model the problem as a weighted undirected graph,
where the nodes of the graph are the peaks of the magnitude
spectrum, and an edge is formed between each pair of nodes.
The edge weight is a function of the similarity between nodes
and utilizes various grouping cues such as frequency, ampli-
tude proximity, and harmonicity. We also propose a novel har-
monicity criterion that we term harmonically wrapped peak sim-
ilarity (HWPS) that is described in Section II-D. Clustering is
performed in the same way for all peaks within a longer “tex-
ture window”” independently of whether they belong to the same
frame or not. The resulting algorithm can be used to separate the
singing voice or predominant melody from complex polyphonic
mixtures of “real-world” music signals. The algorithm is com-
putationally efficient, causal, and real-time. Another important
aspect of our method is that it is data-driven, without requiring
a priori models of specific sound sources as many existing ap-
proaches to separation do [15].

The remainder of the paper is organized as follows. In the next
section, singing voice tracking and formation is formulated as a
spectral clustering problem using sinusoidal peaks as the under-
lying representation. Using this formulation, several perceptual
grouping criteria such as amplitude proximity, frequency prox-
imity, and harmonicity are integrated into a unified framework.
Section III describes experimental results demonstrating the po-
tential of the proposed algorithm as a front end for MIR tasks,
and conclusions are given in Section IV.

II. SINGING VOICE FORMATION AND TRACKING
USING THE NORMALIZED CUT

A. System Overview

In this section, we provide an overview of our proposed
method and define the terminology used in the remainder
of this article. Fig. 1 shows a block diagram of the process;
each step of the process is described in more detail in the
following subsections. The following terms are important for
understanding these descriptions.

* Frames or analysis windows are used to estimate sinu-

soidal peaks from the complex spectrum computed using
an STFT. For the experiments described in this paper, a
frame size corresponding to 46 ms and a hop size of 11 ms
are used.

» Peaks are the output of the sinusoidal modeling stage. For
each frame, a variable number of peaks corresponding to
the local maxima of the spectrum are estimated. Each peak
is characterized by amplitude, frequency, and phase.
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Fig. 1. Block diagram of the voice segregation chain.

* Texture windows correspond to an integer number of
frames. Clustering of peaks across both frequency and
time is performed for each texture window rather than
per frame. For the experiments described in this paper, a
texture window corresponding to 10 frames (=150 ms) is
used.

* Similarity cues are used to calculate the similarity be-
tween sinusoidal peaks belonging to the same texture
window. These cues are inspired by perceptual grouping
cues [11] such as amplitude and frequency proximity and
harmonicity.

¢ The similarity or affinity matrix is calculated by consid-
ering the similarity of every peak to every peak within a
texture window. Hence, the similarity matrix represents the
similarity between peaks within the same frame (simulta-
neous integration) and across time (sequential integration)
within the “texture window.”

* Clusters are groups of peaks that are likely to originate
from the same sound source. By approximately optimizing
the normalized cut criterion, the overall peak similarity
within a cluster is maximized and the similarity between
clusters is minimized. The audio corresponding to any set
of peaks (one or more clusters) can be conveniently resyn-
thesized using a bank of sinusoidal oscillators.

* Source Formation is the process of approximately recon-
structing a particular sound source from a decomposition
of the polyphonic mixture.

B. Sinusoidal Modeling

Sinusoidal modeling aims to represent a sound signal as a
sum of sinusoids characterized by amplitudes, frequencies, and
phase values. A common approach is to segment the signal into
successive frames of small duration so that the parameters can
be considered as constant within the frame. The discrete signal
2% (n) at frame index k is then modeled as follows:

Lk 9
:vk(n) = lz:;af cos <£flk n—I—g/)f) (1

where Fj is the sampling frequency, ¢} is the phase at the be-
ginning of the frame of the /th component of L* sinusoids, and
flk and af are, respectively, the frequency and the amplitude.
Both are considered as constant within the frame.

For each frame k, a set of sinusoidal parameters
Sto= {ph,..-, pik} is estimated. The system parameters
of this short-term sinusoidal (STS) model S* are the L* triplets
p¥ = {fF,ak, ¢k}, often called peaks. These parameters can
be efficiently estimated by picking some local maxima from an
STFT.

We further improve the precision of these estimates by using
phase-based frequency estimators which utilize the relationship
between phases of successive frames [27]-[29]. Assuming that
the frequencies of the pseudoperiodic components of the ana-
lyzed signal are constant during the time-interval between two
successive short-term spectra, with a hop size of H samples, the
frequency can be estimated from the phase difference

o= -1 Ag @
v

The smaller the hop size, the more accurate is this assump-
tion. We consider two successive short-term spectra separated
by one sample. The frequency is estimated directly from the
phase difference A¢ ensuring that the phase is unwrapped so
that the difference is never negative. The resulting estimator,
known as the difference estimator, is:

7t = 55 (LS Tmu s+ 1] = £ ST, i)
where /S denotes the phase of the complex spectrum S, m; is
the frequency bin index of the peak pf within the spectrum, and
ny, is the index of the first sample of analysis frame k. The frame
index k is omitted in the remainder of this subsection.

During the analysis of natural sounds, presence of several fre-
quency components in the same spectral bin or noise may lead
to incoherent estimates. If the frequency f; of a local maximum
located at bin m; is closer to the frequency of another bin, the
local maximum should have been located at this bin. Therefore,

unwrap (3)
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a local maximum with an estimated frequency that does not sat-
isfy the following condition is discarded: | N/ F- f;—my| < 0.5.

Since that the power spectrum of an ideal sinusoid signal has
the shape of the power spectrum of the analysis window, cen-
tered around the sinusoid frequency, the increase of frequency
precision can be used to estimate more precisely the amplitude

| S|
|WH(fl - mlFS/N)|

“)

a1:2

where |S[my]| is the magnitude of the complex spectrum,
W (f) is the spectrum of the Hann window used for the STFT
computation, f being the frequency in Hz. These more precise
estimates of frequency and amplitude parameters are important
for calculating more accurate similarity relations between
peaks. Other frequency estimation methods can also be used,
such as parabolic interpolation [30] or subspace methods [31].
The importance of more precise frequency estimation for our
method compared to the basic approach of directly converting
the fast Fourier transform (FFT) frequency bin number to
frequency is explored in some of the experiments in Section III.

Sinusoidal modeling is particularly suited for sustained
sounds with a definite pitch and harmonic structure such as the
vowels of a singing voice. Consonants can still be represented
but require a large number of sinusoidal components to be rep-
resented accurately [25]. Vowels in singing voices tend to last
much longer than in speech; therefore, in practice a sinusoidal
model can capture most of the singing voice information that
is useful for MIR applications such as the melodic line and the
timbral characteristics.

C. Grouping Criteria

In order to simultaneously optimize partial tracking and
source formation, we construct a graph over each ‘“texture”
window. Unlike approaches based on local information [25],
we utilize the global normalized cut criterion to partition the
graph over the entire “texture” window. Edges are formed
both for peaks within a frame and peaks across frames. Each
partition is a set of peaks that are grouped together such that the
similarity within the partition is maximized, and the similarity
between different partitions is minimized. If L* is the number
of peaks in frame k, then the number of peaks in a “texture”
window is 7" resulting in a similarity matrix of size 7" T’

r=%"I* 5)
k

The maximum L* used in our experiments is set to 20. By
picking the highest amplitude peaks of the spectrum, we usu-
ally achieve fair resynthesis quality using a small number of
sinusoids per frame with a significant savings in computation
time. For example, if the entire STFT spectrum is used as in
Bach [21] the similarity matrix for ten analysis frames of 512
samples would have a size of 5120 x 5120, whereas our case
would have a maximum possible size of 200 * 200.

In a first approach, the edge weight connecting two peaks pf“
and pF+m depends on both frequency W; and amplitude W,

m

proximity (k is the frame index and [ and m are peak indices,

n € {0,..., N — 1} is the frame offset between the peaks, and
N is the “texture” window size; n = 0 is used for peaks of the
same frame)

Wia (pF.pE™) = Wy (07, p5F") = Wa (07, 055") . (6)

We use radial basis functions (RBFs) to model the frequency
and amplitude similarities

(fl’"*f,"{;r")z (a?*aﬁf”)z
Wia (p0,n™) = N\ 7 Jowe TS (D)

The standard deviations of frequencies and amplitudes are
calculated separately for each texture window. For these two
similarities, the amplitudes are measured in dB and the frequen-
cies are measured in Barks (approximately linear below 500 Hz
and logarithmic above). Amplitude and frequency cues are not
enough for multiple overlapping harmonic sound sources. In the
following subsection, we describe a harmonic similarity mea-
sure between peaks that works well for these cases.

D. Harmonically Wrapped Peak Similarity

A wide variety of sounds produced by humans are harmonic,
from singing voice and speech vowels, to musical sounds. As
a result, the harmonicity cue has been widely studied. As ex-
plained by de Cheveigné in [14] for the case of multiple funda-
mental frequency estimation, most approaches use an iterative
method whereby the fundamental frequency of the dominant
source is identified and then used to remove the corresponding
source from the mixture. Few studies have focused on the iden-
tification of harmonic relations between peaks without any prior
fundamental frequency estimation.

The goal is to define a similarity measure between two fre-
quency components (peaks) that is high for harmonically re-
lated peaks and low for peaks that are not harmonically related.
Most existing approaches [23], [32]-[34] use the mathematical
properties of the harmonically related frequencies to build such
a similarity measure for a single frame. For example, Virtanen
[32] considers whether the ratio of the frequencies of the com-
ponents is a ratio of small positive integers, while Martins [34]
selects peaks that are equally far apart in frequency to form har-
monic clusters.

There are several issues concerning these approaches, both
from the technical and perceptual points of view. First, these
type of measures cannot be safely considered for peaks be-
longing to different frames, which is a strong handicap for
our application. The reason of this restriction is that the fun-
damental frequency of the source can change across frames.
Second, these mathematical conditions are not sufficient to
determine whether two peaks are part of a harmonic source.
From a perceptual point of view, two peaks are close on the
“harmonic” axis if these peaks belong to a perceptible com-
pound of harmonically related peaks in the spectrum. This
fact perhaps explains why most separation algorithms first
attempt to identify the pitch of the sounds within the mixture by
considering the spectral information globally, and then assign
frequency components to each estimated pitch. In contrast, our
proposed similarity measure works reasonably well without
estimating the underlying pitch.
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To address these problems, we introduce a new similarity
measure that we term harmonically wrapped peak similarity
(HWPS). The main goal of the HWPS measure is to take ad-
vantage of the flexibility of a harmonically related similarity
between peaks that not only considers each peak in isolation
but also the entire spectral information associated with the re-
maining peaks. This measure can be used both for peaks within
the same frame and among peaks of different frames.

The basic mechanism behind the HWPS measure is to assign
a spectral pattern to each peak . The pattern captures information
about the spectrum in relation to the specific peak. The degree
of matching between two spectral patterns is used as a simi-
larity measure between the two peaks thus utilizing more spec-
tral information than just the amplitude and frequency of the
two peaks. As the spectral pattern of a peak might shift when
changing frames and contains peaks belonging to multiple har-
monic sources, we use a harmonically wrapped frequency space
to align the two spectral patterns corresponding to the peaks.
The goal is that the similarity between peaks belonging to the
“same” harmonic complex is higher than the similarity of peaks
belonging to different harmonic complexes. The three steps of
this process are described below in more detail:

Shifted Spectral Pattern: Our approach relies on a description
of the spectral content using estimates of the frequency and am-
plitude of local maxima of the power spectrum, i.e., the peaks.
We therefore propose to assign to each peak, pf (/ is the peak
index, and k is the frame index), a given spectral pattern, F’“,
based on the set of frequencies (in Hz), £} = {fF}, shifted
within the frame k as follows:

FE={fit =t - ftviennll  ®

where Ly, is the highest peak index of frame k.

The spectral pattern is essentially a shift of the set of peak
frequencies such that the frequency of the peak corresponding
to the pattern maps to O (when ¢ is equal to /). One can easily
see that two peaks of different frames modeling the same partial
will have roughly similar spectral patterns under the assumption
that the spectral parameters evolve slowly with time. This spec-
tral pattern forms a peak-specific view of the spectral content
which is used to calculate a pitch invariant representation using
a wrapped frequency space as described in the following subsec-
tion. The top graphs of Figs. 3 and 4 show overlaid peak-specific
spectral patterns for two pairs of peaks from the harmonic mix-
ture of Fig. 2.

Wrapped Frequency Space: To estimate whether two peaks
p¥ and pkF belong to the same harmonic source, we propose
to measure the correlation between the two spectral patterns
corresponding to the peaks. To achieve this, we would like to
transform the peak-specific spectral patterns in such a way that
when the peaks under consideration belong to the same har-
monic complex the correlation is higher than when they belong
to different harmonic sources. In order to achieve this, the fol-
lowing operations are performed: the energy distribution of a
harmonic source along the frequency axis can be seen as a cyclic
unfolding with periodicity equal to the fundamental frequency
of the source. To concentrate these energies as much as possible

1t A;)BO
® oA
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041 A3 A4’ Bs
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0 . \ , . . ,
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Fig. 2. Two sets of harmonically related peaks (same data as Table I). Used for
Figs. 3-5.

before correlating them, we propose to wrap the frequencies of
each spectral pattern as follows:

Fk
f¥ = mod <% 1) 9)

where h is the wrapping frequency function and mod is the
real modulo function. This wrapping operation would be per-
fect with the prior knowledge of the fundamental frequency.
With this knowledge, we can parametrize the wrapping oper-
ation with

h = min (f0,*, £0,,,**") (10)

where f(’fl is the fundamental frequency of the source of the peak
p¥. Without such prior, we consider a conservative approach
which tends to overestimate the fundamental frequency with

(1)

Notice that the value of the wrapping frequency function h is
the same for both patterns corresponding to the peaks under con-
sideration. Therefore, the resulting wrapped frequency spectra
will be more similar if the peaks belong to the same harmonic
source. The resulting wrapped frequency spectra are pitch in-
variant and can be seen in the middle plot of Figs. 3 and 4.

Discrete Cosine Similarity: The last step is now to correlate
the two harmonically wrapped spectral patterns (F‘lk and F‘f{"")
to obtain the HWPS measure between the two corresponding
peaks. This correlation can be done using an algorithmic ap-
proach as proposed in [35], but this was found not to be re-
liable or robust in practice. Alternatively, we propose to dis-
cretize each harmonically wrapped spectral pattern into an am-
plitude-weighted histogram, H lk , corresponding to each spec-
tral pattern F‘lk . The contribution of each peak to the histogram
is equal to its amplitude and the range between 0 and 1 of the
harmonically wrapped frequency is divided into 20 equal-size
bins. In addition, the harmonically wrapped spectral patterns are
also folded into an octave to form a pitch-invariant chroma pro-
file. For example, in Fig. 3, the energy of the spectral pattern in
wrapped frequency 1 (all integer multiples of the wrapping fre-
quency) is mapped to histogram bin 0.

h' = min (ff, &) .
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Fig. 3. HWPS calculation for peaks A ¢ and A, *, from Fig. 2. From top to
bottom: Shifted Spectral Pattern, Harmonically Wrapped Frequency, and His-
togram of Harmonically Wrapped Frequency. Notice the high correlation be-
tween the two histograms at the bottom of the figure.
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The HWPS similarity between the peaks pf and p*™ is then
defined based on the cosine distance between the two corre-
sponding discretized histograms as follows:

e H{",Hfjf”)

2
Wi (o0 ™) = e<V (bt oot ")) (12)

where

c(HY, HE) =" HY(i) = HL(3). (13)

TABLE 1
HARMONIC SOURCES USED FOR FIGS. 2-5

A0 Al A2 A3 A4,B3 BO Bl B2 B4
440 | 880 | 1320 | 1760 2200 550 | 1100 | 1650 | 2750
a .8 .8 .6 4 4 1 8 .6 4
Similarity Matrix Similarity Matrix

A0 A1 A2 A3 B3, A4B0O B1 B2 B4 A0 A1 A2 A‘3 B3,A4 BO B1

B2 B4

Fig. 5. HWPS matrix for two harmonic sources using the correct f; estimates
(left), and using the conservative estimate of wrapping frequency (likely a har-
monic of the “true” fy) (right). High similarity values are mapped to black and
low similarity values to white.

One may notice that due to the wrapping operation of (9), the
size of the histograms can be kept relatively small, thus saving
computational time.

To illustrate this, let us consider the case of the mixture of
two pitched sound sources, A and B, each composed of four
harmonics with fundamental frequencies of 440 and 550 Hz,
respectively, as presented in Table I and Fig. 2. For the experi-
ments, random frequency deviations of a maximum of 5 Hz are
added to test the resilience of the algorithm to frequency esti-
mation errors. If we consider two peaks of the same source A
and A1, the quantized version of the harmonically wrapped sets
of peaks are highly correlated, as can be seen in the bottom of
Fig. 3. On the other hand, if we consider two peaks of different
sources, A; and By, the correlation between the two discretized
histograms is low (see Fig. 4). The correlation between two his-
tograms of harmonically related peaks still works (although to
a lesser extent) if instead of using the true fundamental f as the
wrapping frequency we use any harmonic of it.

Fig. 5 (left) shows an HWPS similarity matrix computed
among the peaks of two overlapping harmonic sounds within
a frame (also shown in Fig. 2) with perfect knowledge of the
fundamental frequency for each peak respectively. As can be
seen clearly from the figure, the similarity is high for pairs of
peaks belonging to the same source and low for pairs belonging
to different sources. Fig. 5 (right) shows the HWPS similarity
matrix computed among the peaks of the same two overlap-
ping harmonic sounds within a frame using the conservative
approach to estimate the wrapping frequency (basically consid-
ering the lower peak as the “wrapping” frequency). As can be
seen from the figure, although the similarity matrix on the right
is not as clearly defined as the one on the left, it still clearly
shows higher values for pairs of peaks belonging to the same
sound source.

E. Spectral Clustering and the Normalized Cut Criterion

The normalized cuts algorithm, presented in [17], aims to par-
tition an arbitrary set of data points into n clusters. The data
set is modeled as a complete weighted undirected graph G =
(V,E), the nodes V representing the data points and each edge
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E weight, w(i, j), representing the relative similarity between
the two nodes 7 and j. The graph is represented internally by
an affinity matrix W that specifies all edge weights. The parti-
tioning is achieved by recursively dividing one of the connected
components of the graph into two until n complete components
exist. The formulation of the Ncut measure addresses the bias
towards partitioning out small sets of isolated nodes in a graph
which is inherent in the simpler minimal cut disassociation mea-
sure (cut) between two graph partitions A, B:

Z w(u,v)

u€eA,veEB

cut(A,B) = (14)

The criterion that is minimized in order to establish the op-
timal partitioning at any given level is the normalized cut disas-
sociation measure (Ncut):

cut(4, B)
asso(A, V)

cut(4, B)
asso(B,V)

Ncut(A, B) = (15)
where asso(X,V) > uwex.tev W(u,t) is the total of the
weights from nodes in cluster X to all nodes in the graph. An
analogous measure of the association within clusters is the
following (Nasso):

asso(4, A)
asso(A4,V)

asso(B, B)

Nasso(4, B) = asso(B,V)

(16)

where asso(X, X) is the total weight of edges connecting nodes
within cluster X. We note the following relationship between
Ncut and Nasso:
Ncut(A, B) = 2 — Nasso(4, B) (17
Hence, the attempt to minimize the disassociation between
clusters is equivalent to maximizing the association within the
clusters. The hierarchical clustering of the data set via the min-
imization of the Ncut measure, or the equivalent maximization
of the Nasso measure may be formulated as the solution to an
eigensystem. In particular, [17] shows that the problem is equiv-
alent to searching for an indicator vector y such that y;e{1, b}
depending on which of the two subpartitions node : is assigned,
and b is a function of the sum of total connections of the nodes.
By relaxing y to take on real values, we can find a partition that
minimizes the Ncut criterion by solving the generalized eigen-
value system
(D - W)y = ADy (18)
where D isa N x N diagonal matrix with each element of the
diagonal d(4) being the total connection from node ¢ to all other
nodes d(i) = 3 ; w(i, ), and W is a N x N symmetrical ma-
trix containing the edge weights. As described in Shi and Malik
[17], the second smallest eigenvector of the generalized eigen-
system of (18) is the real valued solution to the Normalized Cut
minimization. For discretizing the eigenvectors to produce indi-
cator vectors, we search among [/ evenly spaced splitting points
within the eigenvector for the one that produces a partition with
the best (i.e., smallest) Ncut(A, B) value. The graph is recur-
sively subdivided as described above until n clusters of peaks
have been extracted.

One of the advantages of the normalized cut criterion for clus-
tering over clustering algorithms such as K-means or mixtures
of Gaussians estimated by the EM algorithm is that there is no
assumption of convex shapes in the feature representation. Fur-
thermore, the divisive nature of the clustering does not require a
priori knowledge of the number of output clusters. Finally, com-
pared to point based clustering algorithms such as K-means, the
use of an affinity matrix as the underlying representation en-
ables expression of similarities that cannot be computed as a
distance function of independently calculated feature vectors.
The HWPS measure, proposed in this paper and described in
Section II-D, is an example of such as a similarity measure.

E. Cluster Selection

Among the several clusters C; identified using the normal-
ized cut clustering for each texture window, we want to select
the cluster that most likely contains the voice signal. The pro-
posed approach is straightforward and does not rely on any prior
knowledge of the voice characteristics. This criterion is there-
fore more general and may apply to the selection of any pre-
dominant harmonic source.

A cluster of peaks corresponding to a predominant harmonic
source should be dense in the feature space in which we compute
similarities. The reason is that peaks belonging to a prominent
harmonic audio source have more precise parameter estimates
and therefore comply better to the implicit model expressed
by the various similarity functions. The peaks of a prominent
source will therefore tend to be more similar (mostly in terms
of harmonicity) to peaks belonging to the same source than to
other sources. Thus, the intracluster similarities should be high
for this particular cluster. Let us consider a cluster of peaks P,
of cardinality # P, defined as the set of peaks whose Ncut label
isc

P. = {p} |label (p,) = c} . (19)
We then consider the density criterion:
1 o
d(Pe) = 27 S>> Wean (0f0h) (20

pfepﬂ P%GPF

where £k, j are the frame indices within the texture window and
[, m are, respectively, the peak indices within the frames & and
J. The function Wy, refers to the overall similarity weight that
takes into account frequency, amplitude, and harmonicity. It is
the product of the corresponding weights

Wfah(pl;pm) = Wf(p17pm)*Wa(pl7pm)*Wh(p17pm)- (21)

For the experiments described in Section III, we computed
three clusters for each texture window and selected the two clus-
ters with the highest density as the ones corresponding to the
voice signal. The peaks corresponding to the selected clusters
are used to resynthesize the extracted voice signal using a bank
of sinusoidal oscillators.

III. EXPERIMENTAL EVALUATION

The main goal of the experiments described in the following
subsections is to demonstrate the potential of the proposed
method. The algorithm is efficient and requires no training or
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prior knowledge. The source code of the algorithm is available
as part of Marsyas, a cross-platform open-source software
framework for audio analysis and synthesis.! We hope that
making the algorithm publicly available will encourage other
researchers to use it and experiment with it. We have also made
available on a website? more information about the method
(such as MATLAB code for the HWPS calculation), as well as
the audio datasets described in this section.

A. Corpus Description and Experimental Setup

Three datasets were used for the experiments. The first dataset
was used for tuning the algorithm and the evaluation of the
HWPS similarity cue described in Section III-B. It consists of
synthetically created mixtures of isolated instrument sounds,
voice, harmonic sweeps, and noise. Each clip is approximately
1 s long.

The second dataset consists of ten polyphonic music signals
for which we have the original vocal and music accompaniment
tracks before mixing as well as the final mix. Although rela-
tively small, this dataset is diverse and covers different styles of
singing and music background. It contains the following types
of music: rock (6), celtic (3), and hiphop (1). In addition, we
also evaluate melody extraction on the corpus used for the se-
ries of MIREX audio melody extraction evaluation exchanges; it
consists of 23 clips of various styles including instrumental and
MIDI tracks, for which case we estimate the dominant melodic
voice.

B. Evaluation of the HWPS Cue

The HWPS is a novel criterion for computing similarity be-
tween sinusoidal peaks that are potentially harmonically related.
It is critical for separating harmonic sounds which are particu-
larly important for musical signals. In this subsection, we de-
scribe experiments showing the improvement in separation per-
formance achieved by using the HWPS similarity cue compared
to two existing cues proposed in Srinivasan [23] and Virtanen
[32].

Existing Cues: Srinivasan considers a harmonicity map that
can be precomputed to estimate the harmonic similarity between
two spectral bins. Considering two bin indexes ¢ and j, the map
is computed as follows:

hmap(i,j) = 1if mod (¢,7) = 0ormod (j,7) = 0. (22)

This map is next smoothed to allow increasing level of inhar-
monicity using a Gaussian function, normalized so that the sum
of its elements is unity. The standard deviation of the Gaussian
function is set to be 10% of its center frequency; see [23] for
further details. The similarity between peaks p; and p,, is then

W(pt, pm) = shmap(M;, M,,) (23)

where shmap is the smoothed and normalized version of hmap,
and M corresponding to the bin index of peak p;. The frames
indexes are omitted for clarity sake.

According to Virtanen [32], if two peaks p; and p,, are har-
monically related, the ratio of their frequencies f; and f,,, is

I[Online]. Available: http://www.marsyas.sourceforge.net.

2[Online]. Available: http://www.opihi.cs.uvic.ca/NormCutAudio.

TABLE II
SDR VALUES FOR OLD+NEW EXPERIMENTS

XN XS VN VS CN CS
12.87 | 933 | 10.11 | 7.67 | 2.94 | 1.52
13.05 | 9.13 | 11.54 | 7.69 | 3.01 | 2.09

A+F
A+F+H

a ratio of two small positive integers a and b (which corre-
spond to the harmonic rank of each peak, respectively). By as-
suming that the fundamental frequency cannot be below the
minimum frequency found by the sinusoidal modeling front-end
(i.e., fmin = 50 Hz), it is possible to obtain an upper limit for
a and b, respectively, @ < | fi/fmin] and b < [ fim/fminl- A
harmonic distance measure can be defined as

os ()

by considering all the ratios for possible a and b and choosing
the closest to the ratio of the frequencies.

Evaluation Criteria: To compare our proposed cue with the
existing ones, we use the signal-to-distortion ratio (SDR) as a
simple measure of the distortion caused by the separation algo-
rithm [36]. It is defined in decibels as

> 8(t)’
>4 [3(t) = s()]?

where s(t) is the reference signal with the original separated
source and 5(t) is the extracted source. The main use of the SDR
measure in this section is to evaluate the relative improvement
in separation performance achieved by the use of the HWPS
cue. The SDR is only an approximate measure of the perceptual
quality of the separated signals. We also encourage the readers
to listen to the examples on the provided webpage. No postpro-
cessing of the extracted signals was performed in order to pro-
vide better insight about the algorithm and its limitations. For
example, a dominant cluster is always selected independently
of the presence of a singing voice.

For the first set of experiments, we utilize an experimental
setup inspired by the “old+new’ heuristic described by Bregman
[11]. Similar experiments were described in [12]. Each sample
is created by mixing two sound sources in the following way: for
the first part of the sound, only the “old” sound source is played
followed by the addition of the “new” sound source (old+new)
in the second part of the sample. Normalized cut clustering is
performed over the entire duration of the clip. The clusters that
contain peaks in the initial “old”-only part are selected as the
ones forming the separated source. The remaining peaks are
considered to be part of the “new” sound source. The SDR
measures the distortion/interference caused by this “new” sound
source to the separation algorithm.

Table II compares different mixtures of isolated sounds sepa-
rated using only frequency and amplitude similarities, and also
separated with the additional use of the HWPS similarity. The
following conventions are used in Table II: X is saxophone, N
is noise, V is violin, S is harmonic sweep, and C is voice. A,
F, and H correspond to using amplitude, frequency, and HWPS
similarities, respectively. As can be seen from the table, in al-
most all cases, the use of the HWPS improves the SDR measure
of separation performance.

Wv(phpm) =1- Inina,b (24)

SDR [dB = 101log;, (25)
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TABLE III
SDR VALUES USING “TEXTURE” WINDOWS

XN XS VN VS CN CS
A+F 9.79 [ 3.09 | 329 | 6.50 | 3.01 | 3.01
A+F+H | 733 | 503 | 473 | 535 | 3.08 | 3.07
TABLE IV

SDR MEASUREMENTS OF POLYPHONIC MUSIC SEPARATION
USING DIFFERENT SIMILARITY MEASURES

[ Track Title [ AF [ HS [ HV [ THWPS [ HWPS ]
bentOutOfShape 2.66 1.19 1.17 5.65 8.03
intoTheUnknown | 0.65 3.24 0.81 3.29 4.05
isThisIt 1.94 2.71 2.07 2.18 2.65
landingGear 1.29 5.29 0.81 4.40 6.37
schizosonic 0.57 3.11 0.59 2.86 3.96
smashed 0.22 1.15 0.29 1.17 1.54
chavalierBran 425 7.21 1.6 4.02 6.83
laFee 7.7 6.62 2.48 4.88 6.93
lePub 0.23 0.48 0.23 0.38 0.47
rockOn 0.96 1.78 0.79 1.60 1.74

For the second set of experiments shown in Table III, the
“old+new” mixtures are separated directly using the approach
described in Section II-F to select the dominant sound source.
Unlike the previous experiments, the spectral clustering is per-
formed separately for each “texture” window, and the highest
density cluster is selected as the separated voice. This is a more
realistic scenario as no knowledge of the individual sound
sources is utilized. As expected, the SDR values are lower but
again the use of the HWPS improves separation performance
in most cases.

The third set of experiments, shown in Table IV, illustrate the
improvement in separation performance using the HWPS cue
for the case of singing voice extraction from monaural poly-
phonic audio recordings. As a reference signal for computing
the SDR, we use a sinusoidal representation of the original
voice-only track using 20 sinusoidal peaks per analysis frame.
This way, the SDR comparison is between similar represen-
tations and therefore more meaningful. This representation of
the reference signal is perceptually very similar to the original
voice-only signal and captures the most important information
about the singing voice, such as the identity of the singer,
pitch, vibrato, etc. The first column of Table IV shows the
performance of our approach using only the amplitude and fre-
quency similarities. The other columns show the performance
of using the three different harmonicity similarities in addition
to amplitude and frequency. All the configurations utilize the
same parameters for the normalized cut algorithm, and the only
thing that changes is the definition of the similarity function. As
can be seen, in most cases the HWPS similarity provides better
results than the Virtanen similarity (HV) and the Srinivasan
similarity (HS) and behave similarly otherwise. Finally, the
last two column show the importance of precise frequency
estimation (HWPS) described in Section II-B compared to
rough frequency estimation directly from FFT bins (rHWPS).
A similar drop in performance between rough and precise
estimation was also observed for HV and HS but not included
in the table.

C. Melodic Pitch Extraction

The melodic line is a critical piece of information for de-
scribing music and is very influential in the identity of a musical
piece. A common approach to automatic melody extraction is
to attempt multiple pitch extraction on the polyphonic mixture
and select the predominant pitch candidate as the pitch of the
signing voice [7], [37]. The detected pitch can then be used to
inform source separation algorithms. In our method, the singing
voice is first separated and the melodic pitch is subsequently ex-
tracted directly from the separated audio.

For each song in our dataset of ten songs (for which the orig-
inal voice-only tracks are available), the pitch contours were cal-
culated for three configurations: the original clean vocal signal,
the polyphonic recording with both music and vocals (VM), and
the vocal signal separated by our algorithm (Vsep). Two pitch
extraction algorithms were utilized: a time-domain autocorre-
lation monophonic pitch extraction algorithm implemented in
Praat [38], and a recent multipitch estimation algorithm devel-
oped by Klapuri [37]. Both approaches were configured to esti-
mate fundamental frequencies in the range [40 2200] Hz, using
a hop size of 11 ms and an analysis window with a length of
about 46 ms.

The pitch contours estimated using Praat from the polyphonic
recordings with both music and vocals will be referred in the
text, figures, and tables as V M,;aat, While the ones extracted
using Klapuri’s algorithm will be referred as V Myj,,;,. Similarly,
for the separated vocal signals, we use V Seppraat. For ground
truth, we extract a reference pitch contour using Praat from the
original voice-only track of each song. We confirmed that this
ground truth is correct by listening to the generated contours.

For the purpose of this specific evaluation, we only consider
the singing segments of each song, identified as the segments in
the ground truth pitch contours that present nonzero frequency
values. For each pitch contour, we compute at each frame the
normalized pitch error as follows:

k]
frof [k]

where f,.. ¢[k] corresponds to the frequency values of the ground
truth pitch contour, measured in Hertz, and & is the frame index.
f[k] is either related to the frequency value of the pitch contour
extracted from the mixed signal (i.e., V My aat OF V Myiap), OF
to the pitch contour extracted using the vocal track separated by
our algorithm (i.e., V. Seppraat). The normalized error NV F is
zero when the pitch estimation is correct, and an integer number
for octave errors (i.e., when f[k] = 2™ X frc¢[k], n € N). Since
we are only considering the singing segments of the signals,
both f[k] and f.¢[k] will never be zero.

Given that this evaluation is related to (musical) pitch esti-
mation, we also defined a chroma-based error measure N E;,,
derived from N F, where errors are folded into a single octave
as follows:

NE[k] = |log, (26)

0, it NE[K] = 0
Y it NE[k] # 0
NEchr[k] - A InOd (NE[]C]/ 1) =0

mod (NE[k],1), otherwise

27)
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TABLE V
NORMALIZED PITCH ERRORS AND GROSS ERRORS ACROSS CORPUS
NE | NEg, || GE (%) | GE — 8% (%)
VM praat 862 | 051 82.44 66.00
VSeppraar | 3.89 | 035 64.45 55.23
M jaap 0.55 | 026 55.70 48.68

where mod() is the real modulo function. This allows bringing
to evidence the chromatic distribution of the errors, wrapping all
pitch inaccuracies into the interval [0, 1], where O corresponds
to no pitch estimation error and 1 accumulates all the octave-
related errors.

Table V shows the normalized pitch errors across our dataset
of ten songs for the different evaluation scenarios. It also
presents the gross error (GE) for each case, defined as the sum
of all errors bigger than half a semitone (i.e., for NE > 1/24).
This tolerance allows accepting estimated frequencies inside a
one semitone interval centered around the true pitch as correct
estimates. Also presented is the gross error excluding all octave
errors (GE — 8Y¢). Octave ambiguities can be accepted as
having smaller impact than other errors for many musical
applications.

From the results obtained from the V M,..¢ evaluation,
a GFE in excess of 82% confirms the expected inability of
monophonic pitch detectors such as the Praat algorithm to
accurately estimate the most prominent pitch on polyphonic
music recordings. However, if using the same exact pitch
estimation technique on the voice signal separated by our
system (i.e., V Seppraat), the results demonstrate a clear im-
provement, reducing the gross error rate GE to about 64%.
Although the proposed scheme do not compare favorably to
the state-of-the-art multipitch algorithm by Klapuri (GE of
55.7%), it shows the ability of our method to simplify the
acoustic scene by focusing on the dominant harmonic source.

It is also interesting to look at the distribution of errors. Fig. 6
shows the distribution of the normalized and octave wrapped
errors as percentages over the total number of estimated pitch
frames (the upper plot presents the significant section of the
N FE distribution while the lower plot shows the N E..p,,. distri-
bution). All three evaluations presented in the plots show a sim-
ilar tendency to output one-octave ambiguities (i.e., about 6%
for NE = 1). V M ,;..¢ presents several additional high-valued
error peaks caused by incorrect pitches estimated due to the
presence of multiple overlapping notes from the musical back-
ground. These errors are significantly reduced in the case of
the pitch estimation on the separated signal using our method.
When compared to V My,,, most of the pitch estimation er-
rors from V Seppraat result from octave and perfect-fifth (i.e.,
NE.p, = 7/12) ambiguities.

We also conducted similar experiments using the corpus
used for the MIREX automatic melody extraction evaluation
exchange.3 In this case, we had no access to the original
melody-only tracks, but ground truth pitch contours were
provided for the evaluation. The MIREX examples include
some synthesized MIDI pieces, which are simpler to separate
as they do not include reverberation and other artifacts found

3[Online]. Available: http://www.music-ir.org/mirex2005/index.php/Main_
Page
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Fig. 6. Distribution of errors as percentages of total pitch estimates across
corpus. The top plot presents a segment of the normalized error distribution N E
(no significant error values exist outside the plotted ranges), while the bottom
plot depicts the corresponding octave wrapped error distribution N E.}, .. The
pitch errors from using Praat on the separated voice signals are represented in
black color, while its use on mixed signals is represented by the slashed line and
white bars. The multiple pitch approach of Klapuri is represented in gray.

TABLE VI
NORMALIZED PITCH ERRORS AND GROSS ERRORS FOR MIREX DATASET
NE NE GE (%) GE - 8" (%)
VM praat 329 0.48 76.02 55.87
VSeppraat 1.34 0.36 54.12 34.97
VM jiap 0.34 0.15 34.27 29.77

in real-world signals. Most of the examples also have a more
pronounced vocal line or dominant melody than the corpus
used for the previous experiments, and therefore most of the
results were better. Table VI shows the normalized pitch errors
and gross errors for the MIREX corpus. The distribution of the
normalized errors are depicted in Fig. 7.

D. Voicing Detection

Voicing detection refers to the process of identifying whether
a given time frame contains a “melody” pitch or not. The
goal of the experiments described in this subsection was to
determine whether the proposed voice separation algorithm
can be used to improve voicing detection accuracy in monaural
polyphonic recordings. The dataset of the ten polyphonic music
pieces for which we have the original separate vocal track
was used for the experiments. The voiced/unvoiced decisions
extracted using Praat [38] from the original vocal track were
used as the ground truth. A supervised learning approach
was used to train voiced/unvoiced classifiers for three con-
figurations: V Myircc refers to using Mel-frequency cepstral
coefficients (MFCCs) [39] calculated over the mixed voice and
music signal, V Sepyrcc refers to MFCC calculated over the
automatically separated voice signal, and V Sepcpr refers to
using the cluster peak ratio (CPR), a feature that can be directly
calculated on each extracted clusters of peaks. It is defined as

max(A*)

r= mean(A*) (28)
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Fig.7. Distribution of errors over the MIREX audio melody extraction dataset.
The top plot presents a segment of the normalized error distribution N E (no
significant error values exist outside the plotted range), while the bottom plot
depicts the corresponding octave wrapped error distribution N E. ;... The pitch
errors from using Praat on the separated voice signals are represented in black
color, while its use on mixed signals is represented by the slashed line and white
bars. The multiple pitch approach of Klapuri is represented in gray.

TABLE VII
VOICING DETECTION PERCENTAGE ACCURACY
ZeroR | NB | SVM
VMyrce 55 69 69
VSepurce 55 77 86
VSepCPR 55 73 74

where A* are the extracted peak amplitudes for frame k. Voiced
frames tend to have more pronounced peaks than unvoiced
frames and therefore higher CPR values.

The experiments were performed using the Weka machine
learning framework, where NB refers to a Naive Bayes clas-
sifier and SVM to a support vector machine trained using the
sequential minimal optimization (SMO) [40]. The ZeroR clas-
sifier classifies everything as voiced and was used as a baseline.
The goal was to evaluate the relative improvement in classifica-
tion performance when using the separated voice signal rather
than building an optimal voicing detector. No smoothing of the
predictions was performed.

Table VII shows the classification accuracy (i.e., the
percentage of frames correctly classified using these three
configurations). All the results were computed using tenfold
cross-validation over features extracted from the entire corpus.
In tenfold cross-validation, the feature matrix is shuffled and
partitioned into ten “folds.” The classification accuracy is
calculated by using nine of the folds for training and one fold
for testing and the process is repeated ten times so that all
partitions become the testing set once. The classification results
are averaged. Tenfold cross-validation is used to provide a
more balanced estimate of classification accuracy that is not as
sensitive to a particular choice of training and testing sets [40].
Using the automatically separated voice results in significant
improvements in voicing detection accuracy. Additionally, the
use of the simple and direct CPR feature still outperforms a
more complex classifier trained on the mixed data.

IV. CONCLUSION AND FUTURE WORK

We described how spectral clustering using the normalized
cut criterion for graph partitioning can be used for predominant
melodic source separation. Our proposed method is based on a
sinusoidal peak representation which enables close to real-time
computation due to its sparse nature. Grouping cues based on
amplitude, frequency, and harmonicity are incorporated in a uni-
fied optimization framework. HWPS, a novel harmonicity sim-
ilarity measure, was also proposed. Experimental results eval-
uating HWPS and the proposed method in the context of mix-
ture separation, audio melody extraction, and voicing detection
were presented. The proposed algorithm is causal, efficient, and
does not require any prior knowledge or song-specific param-
eter tuning.

There are many possible directions for future work. Although
not necessary for the operation of the algorithm, prior knowl-
edge such as sound source models or score representations could
easily be incorporated into the similarity calculation. For ex-
ample, the likelihood that two peaks belong to the same sound
source model [15] could be used as an additional similarity cue.
Additional cues such as common amplitude and frequency mod-
ulation as well as the use of timing information such as onsets
are interesting possibilities for future work. Another interesting
possibility is the addition of common panning cues for stereo
signals as proposed in [41] and [42].

Limitations of the current method suggest other directions
of future work. Even though some grouping of components
corresponding to consonants is achieved by the amplitude and
frequency similarity cues, the sinusoidal representation is not
particularly suited for nonpitched sounds such as consonants
sounds. Alternative analysis front-ends such as perceptually
informed filterbanks or sinusoids+transient representations
could be a way to address this limitation.

In the current system, the cluster selection and resynthesis
are performed for the entire song independently of whether a
singing voice is present or not. The use of a singing voice de-
tector to guide the resynthesis would surely result in better re-
sults. Implementing such a singing voice detector directly based
on properties of the detected cluster is an interesting possibility.
The resynthesis also suffers from artifacts that result from the
limitations of the sinusoidal representation. An interesting alter-
native would be to retain the sinusoidal modeling front-end for
grouping but use the entire STFT spectrum for the resynthesis of
the extracted voice. As studied in [43], such a resynthesis stage
is more flexible and reduces artifacts.

Finally, in the current implementation, clustering and cluster
selection are performed independently for each “texture”
window. In the future, we plan to explore cluster continuity
constraints (for example neighboring clusters in time cor-
responding to the same source should have similar overall
characteristics) as well as more sophisticated methods of
cluster selection.

We believe our work shows the potential of spectral clustering
methods for sound source formation and tracking. We hope it
will stimulate more research in this area as it can have significant
impact in many MIR applications such as singer identification,
music transcription, and lyrics alignment.
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