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An experimental comparison of audio tempo
Induction algorithms

Fabien Gouyon*, Anssi Klapuri, Simon Dixon,
Miguel Alonso, George Tzanetakis, Christian Uhle

Abstract— We report on the tempo induction contest organ-
ised during the International Conference on Music Information
Retrieval (ISMIR 2004) held at the University Pompeu Fabra
in Barcelona in October 2004. The goal of this contest was to
evaluate state-of-the-art algorithms in the task of inducing the
basic tempo (as a scalar, in beats per minute) from musical
audio signals. To our knowledge, this is the first published cross-
validation of audio tempo induction algorithms.

Participants were invited to submit algorithms to the contest
organiser, in one of several allowed formats. No training data
was provided. A total of 12 entries were received, 11 of which
are reported in this document. Results on the test set of 3199
instances were returned to the participants before they were made
public. Anssi Klapuri’s algorithm won the contest.

This evaluation shows that state-of-the-art tempo induction
algorithms can reach over 80% accuracy for music with a
constant tempo, if we do not insist on finding a specific metrical
level. After the competition, the algorithms and results were
analysed in order to discover general lessons for the future
development of tempo induction systems. One conclusion is
that robust tempo induction entails the processing of frame
features rather than that of onset lists. Further, we propose
a new “redundant” approach to tempo induction, inspired by
knowledge of human perceptual mechanisms, which combines
multiple simpler methods using a voting mechanism.

Machine emulation of human tempo induction is still an open
issue. Many avenues for future work in audio tempo tracking are
highlighted, as for instance the definition of the best rhythmic
features and the most appropriate periodicity detection method.

In order to stimulate further research, the contest results, data,
annotations and evaluation software have been made available at
http://ismr2004.ismr.net/l1SM R _Contest. htmnl

Index Terms— Tempo Induction; Evaluation; Benchmark.

EDICS Category: 2-M US|

I. INTRODUCTION

Much effort in the computer music community has been
dedicated to the automation of the beat induction and tracking
tasks: determining the basic tempo (rate of musical beats in
time) and the positions of individual beats in musical files or
streams. A number of diverse formalisms have been used to
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implement computer systems performing these tasks; a survey
can be found in [1].

In any computational modelling endeavour, systematic eval-
uations play an important part. They require on the one hand
reference examples of correct analyses, that is, large and
publicly available annotated data sets (which in turn calls for
an agreement on the manner of representing and annotating
relevant information about this data) and on the other hand
agreed evaluation metrics.

Such evaluations have received little attention in the field
of tempo induction and tracking. Early models usually did
not present quantitative evaluation of the proposed models,
and only recently have researchers begun to report on the
performance of their systems, but they meet with the following
difficulties:

First of all, even if a number of papers propose evaluation
methodologies, no consensus has been reached on how to
evaluate algorithms because of the diversity of input and output
data representations as well as the diversity of applications
[2]. For instance, Temperley [3] convincingly highlights short-
comings of metrics proposed by Goto and Muraoka [4] and
Cemgil et al. [5], and proposes an evaluation method that
seems suitable for systems processing MIDI input. However,
as this metric is based on a note-by-note evaluation (not beat-
by-beat), in order for it to be useful for acoustic signal inputs,
it would require complete transcriptions of these signals, an
unrealistic requirement from the point of view of manual
annotation, and well beyond the scope of the tempo induction
algorithms themselves.

Secondly, the evaluation data sets used by many researchers
are usually private and of relatively small size, which makes
it difficult to compare one system with another. For exam-
ple, a collection of score-matched MIDI performance data
is available from the Music, Mind and Machine Group of
the University of Nijmegen® (around 200 performances of
2 Beatles songs by 12 pianists performed in several tempo
conditions). Results on this data set were reported by Cemgil
et al. [5] and Dixon [6], and the latter argued that more
challenging data was needed. Also, Temperley [3] provides
a publicly available data set? of 46 pieces with metronomical
timing and 16 performed pieces, all taken from the common-
practice Western repertoire. However, in both cases, the data
sets are only suitable for evaluating systems dealing with MIDI
input, and not acoustic signal input.

Ihttp://www.nici .kun.nl/mmm/archives/
2ftp://ftp.cs.cmu.edu/usr/ftp/usr/sleator/
melisma2003



As a first step towards more systematic evaluations and
comparisons, a contest was organised during the International
Conference on Music Information Retrieval (ISMIR 2004)
held at the University Pompeu Fabra in Barcelona in October
2004.3 The task was restricted to the induction of tempo as
a scalar, in beats per minute (BPM), and not the individual
beat positions. Researchers were encouraged to participate
by several means, including a “call for algorithms” on the
Music Information Retrieval mailing-list*; the respondents set
up and agreed upon a common evaluation benchmark for the
competition.

In this paper, we present 11 of the 12 submitted algorithms
and highlight differences in their implementations. We then
detail the evaluation framework set up for the contest, the
test database and the evaluation method. The results are
then presented and discussed, with a focus on relating the
performance differences to design choices in the systems. We
stress important achievements in the field of audio tempo
induction, and highlight open issues and possible avenues for
future work in this field, proposing ways to tackle them in
further, improved, tempo induction contests.

For information on other audio description contests, also
held during ISMIR 2004 (on Genre Classification, Artist
Identification, Melody Detection and Rhythm Classification),
see [7] and the contest webpage.

Il. ALGORITHMS

Of the 12 algorithms entered in the contest, 11 were
submitted by 6 different research teams, and one open-source
algorithm (GPL-licensed) was downloaded from the web. One
entrant chose not to participate in this report, so we report here
on 11 algorithms, which are described below in alphabetical
order. The contest organiser did not compete.

Algorithms were submitted in various formats: the open-
source entries were submitted as C, C++ or Matlab source
code, and the others as Windows or GNU/Linux binaries or
Matlab pre-parsed pseudocode files.

All of the algorithms are based on a common general
scheme: a feature list creation block, that parses the audio data
into a temporal series of features which convey the predom-
inant rhythmic information to the following pulse induction
block (see [1]). The features can be onset features or signal
features computed at a reduced sampling rate. For example,
onset features might consist of a list of times and amplitudes of
note onsets, whereas signal features might consist of average
energy values computed on successive 10 ms or 20 ms frames,
or a differential of the energy in various frequency bands .

Many algorithms also implement a beat tracking block,
however, as the contest did not address the issues of tracking
tempo changes and determining beat positions, the submitted
algorithms either bypassed this block or added a subsequent
back-end for the purpose of the contest, i.e. a parsing of the
beat positions into a global tempo estimation.

3The conference webpage is http://ismir2004.ismir.net/
4http://listes.ircam.fr/wws/info/music-ir
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A. Alonso

Miguel Alonso from the Ecole Nationale Sup erieure des
T el 'ecommunications (ENST) in Paris submitted two algo-
rithms, referred to as AlonsoACF and AlonsoSP, which
were submitted in the form of p-files, i.e. Matlab pre-parsed
pseudocode files (source code is not visible).

Both methods are based on the same front-end that extracts
phenomenal accents, i.e., onsets of notes, by detecting sudden
changes in dynamics, timbre, or harmonic structure. A time-
frequency representation of the audio signal is calculated, and
the rate of change of the spectral energy content is found by
filtering this representation with a differentiator FIR filter. The
positive contributions of each spectral line are summed in the
frequency domain and a quasi-periodic and noisy pulse-train
is obtained. This pulse-like signal exhibits sharp maxima at
those time instants where a phenomenal accent occurs.

The difference between the systems is found in the pulse in-
duction block. The first method is based on the autocorrelation
of the pulse signal, while the latter uses the spectral product.
Both algorithms are described in detail in [8]. These systems
were originally conceived for beat-tracking, but the tracking
part was disabled in the versions submitted to the contest.

B. Dixon

Simon Dixon from the Austrian Research Institute for
Artificial Intelligence (OFALI) in Vienna submitted three entries
to the contest: Dixonl, DixonT and DixonACF.

The first two are GNU/Linux binaries based on the beat
tracking system BeatRoot detailed in [9].° They are both based
on a simple energy-based onset detector followed by an inter-
onset interval (IOI) clustering algorithm. Dixonl selects a
tempo based on the “best” cluster, where the clusters are as-
sessed by the number of 101s they contain, the amplitude of the
corresponding notes, and the support of other clusters related
by simple integer ratios. DixonT selects several prominent
clusters as tempo hypotheses, performs beat tracking based
on these hypotheses, and outputs the mean of the inter-beat
intervals from the best beat tracking solution as the final
estimate of tempo.

DixonACF (Matlab source code) is described in [10]. This
algorithm splits the signal into 8 frequency bands, and then
smooths, downsamples and performs autocorrelation on each
of the frequency bands. From each band, the 3 highest peaks
(excluding the zero-lag peak) of the autocorrelation function
are combined, and each is assessed as a possible tempo
candidate, with the highest scoring peak determining the final
tempo value.

C. Klapuri

Anssi Klapuri from the Tampere University of Technology
submitted one algorithm as a GNU/Linux binary, referred to
as Klapuri.

An important aspect of this algorithm lies in the feature list
creation block: the differentials of the loudness in 36 frequency

5BeatRoot is available as GPL code at http://www.ai.univie.ac.
at/“simon/beatroot/index.html
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subbands are combined into 4 “accent bands”, measuring the
“degree of musical accentuation as a function of time.” The
goal in this procedure is to account for subtle energy changes
that might occur in narrow frequency subbands (e.g. harmonic
or melodic changes) as well as wide-band energy changes (e.g.
drum occurrences). The pulse induction block implements a
bank of comb filters comparable to that proposed by Scheirer
[11] (see below).

Another particularity of this algorithm is the joint determi-
nation of three metrical levels (the tatum, the tactus and the
measure) through probabilistic modelling of their relationships
and temporal evolutions. After computing the tactus beats of
the whole test excerpt, the tempo was computed as the median
of the inter-beat intervals of the excerpt’s latter half. See [12]
for a complete description of the algorithm.

D. Scheirer

The source code of Eric Scheirer’s algorithm (formerly
MIT Media Lab) was downloaded from the web (http://
sound.media.mit.edu/"eds/beat/tapping.tar.
gz). Anssi Klapuri ported it to GNU/Linux — it is the same
code that was used in Klapuri’s evaluations [12] — and it was
then compiled in the UPF labs (it is referred to as Scheirer).

An important novelty promoted in [11] was to perform
pulse induction on regularly-sampled series of signal fea-
tures (amplitude envelope) rather than on series of discrete
events (as onset times). Further, Scheirer also argued that
pulse induction should be performed separately on the signal
features computed on each of several frequency bands, and
then combined, rather than on a single series containing the
combined features. In the implementation used, the number of
frequency subbands is 6.

Another important novelty was to introduce the use of comb
filterbanks for the pulse induction block. This technique is
foreshadowed by the “clock model” of Povel and Essens [13]
in that it seeks the series of periodically-spaced clock pulses
that best matches the feature list (the implementation in the
form of a bank of comb filters introduces an exponential decay
on the clock pulse amplitudes).

The output of the algorithm is a set of beat times rather
than an overall tempo estimate, so we added a small back-
end to the code that outputs the state of the filterbank after
the analysis of the whole sound file. Then the tempo is taken
to be the resonance frequency of the filter with the highest
instantaneous energy after the whole analysis. See [11] for
more details on the algorithm.

E. Tzanetakis

George Tzanetakis from Victoria University submitted
3 entries: TzanetakisH, TzanetakisMS and
TzanetakisMM. GNU/Linux binaries were compiled
at the UPF labs from the source code available on the
SourceForge web.®

All the three methods are based on the wavelet front-end
described in [14]. The signal is segmented in time into 3 s

Smarsyas-0.2 under http://www.sourceforge.net/projects/
marsyas

analysis windows (with an overlap of 1.5 s). In each window,
the signal is decomposed with the help of a wavelet transform
into 5 octave-spaced frequency bands, and the amplitude
envelope is extracted in each band.

Regarding the pulse induction block, all three methods use
autocorrelation, however, they differ in some aspects. The
default method (TzanetakisMS) sums the diverse subband
amplitude envelopes and computes an autocorrelation of the
resulting sum. The maximum peak in the autocorrelation (a
tempo estimate) is computed on each analysis window and
the median of the tempo estimates is chosen as the final
tempo. TzanetakisMM makes a separate tempo estimate
for each band and each analysis window, and then selects
the median. TzanetakisH sums the subband amplitude
envelopes, computes an autocorrelation of the resulting sum,
selects several autocorrelation peaks and accumulates them
in a histogram which summarises the peaks of all analysis
windows. The tempo is finally set to the highest peak of the
histogram.

F. Uhle

Christian Uhle from Fraunhofer Institute for Digital Media
Technology submitted one algorithm as a Windows binary,
referred to as Uhle.

This algorithm calculates the rates of metrical pulses on
three levels (the tatum, the tactus and the measure). The audio
signal is segmented into characteristic long-term segments
corresponding for example to a verse or a chorus [15]. Am-
plitude envelopes for logarithmically spaced frequency bands
are calculated by means of the Discrete Fourier Transform
and smoothed using an FIR low-pass filter. Slope signals of
the amplitude envelopes are computed by means of the rela-
tive difference function, as suggested in [12], and half-wave
rectification. The slope signals are summed across all bands
to produce an “accent signal.” An autocorrelation function
(ACF) is computed for non-overlapping 2.5 s segments inside
each long-term segment. The tatum period is estimated from
the ACF by means of a periodicity detection procedure; and
a second ACF is calculated on a larger time scale (7.5 s)
to detect periodicities in the range of musical measures. A
function representing periodicity saliences at integer multiples
of the tatum period (i.e. ACF local maxima) is computed
and compared (i.e. correlated) with a number of pre-defined
metrical templates, which characterise musical knowledge of
different meters. The current implementation has 17 templates.
The most highly correlated template determines the value of
the segment’s tempo. Tempi are accumulated in a weighted
histogram and the maximum vyields the basic tempo of the
piece. See [16] for more details.

I1l. EXPERIMENTAL FRAMEWORK
A. Infrastructure

Two computers were used: AlonsoACF, AlonsoSP and
Uhle were run on Windows OS, the rest on GNU/Linux OS,
both 1.6 GHz, with 512 MB RAM. The evaluation framework
was designed as a set of Matlab, perl, shell and dos scripts.
For a robustness test (see below), several types of distortion



were applied to the signal using the programs Sox and Matlab.
However, it was ensured that the tempo was still clearly
perceivable even in the cases of severe degradation of signal
quality. All of the test scripts are available from the contest
webpage.

B. Data

The preparatory data consisted of 7 instances given to
the participants together with their tempo values in order to
compare whether algorithms yield the same output when run
in participants’ labs and on our machines, and to check proper
formatting of algorithm input and output.

No training data was provided.

The test data consisted of 3199 tempo-annotated instances
in 3 data sets as described below. The instances range from
2 to 30 seconds, and from 24 BPM’ to 242 BPM. Figure 1
illustrates the distribution of test excerpts along the tempo axis.
They all have approximately constant tempi, and the format
is the same for all: mono, linear PCM, 44100 Hz sampling
frequency, 16 bit resolution. The total duration of the test set
is approximately 45140 s (i.e. around 12 h 36 min). This data
was not available to participants before the competition. Part of
the data has now been made available on the contest webpage.

1) Loops: Online sound effect retailers provide (among
other sounds) short “loops” to include in DJ sessions, or for
home recording needs. The set that we used is annotated with
the tempo in BPM.

o Total number of instances: 2036

o Duration: a few bars

o Total duration: around 15170 s

« Tempo range: between 60 and 215 BPM, see Figure 1(c)
o Genres: Electronic, Rock, House, Ambient, Techno.

2) Ballroom: BallroomDancers.com® provides information
on ballroom dancing (online lessons, etc.). Some characteristic
excerpts of many dance styles are provided in real audio
format, labelled with a tempo value.

« Total number of instances: 698

o Duration: around 30 s

« Total duration: around 20940 s

« Genres: see style distribution in Table 1.

« Tempo range: between 60 and 224 BPM, see Figure 1(b)

Cha Cha 111
Jive 60
Quickstep 82
Rumba 98
Samba 86
Tango 86
Viennese Waltz | 65
Slow Waltz 110
TABLE |

STYLE DISTRIBUTION OF THE BALLROOM DANCE MUSIC EXCERPTS

“Note however that only 15 excerpts have a tempo less than 50 BPM
Shttp://www.bal lroomdancers.com/
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3) Song excerpts: A professional musician® placed beat
marks on several song excerpts. The ground-truth tempo was
computed as the median of the inter-beat intervals.

o Total number of instances: 465

o Duration: around 20 s

« Total duration: around 9300 s

« Genres: see distribution in Table II.

Tempo range: between 24 and 242 BPM, see Figure 1(d)

Rock 68
Classical 70
Electronica 59
Latin 44
Samba 42
Jazz 12
AfroBeat 3
Flamenco 13
Balkan and Greek | 144

TABLE Il
GENRE DISTRIBUTION OF THE SONG EXCERPTS

C. Evaluation methods
There were two evaluation metrics for the contest:

« Accuracy 1: The percentage of tempo estimates within
4% (the precision window) of the ground-truth tempo.

« Accuracy 2: The percentage of tempo estimates within
4% of either the ground-truth tempo, or half, double, three
times, or one third of the ground-truth tempo.

The latter evaluation metric was motivated by the fact that
the ground-truth we use for evaluation does not necessarily
represent the metrical level that the majority of human lis-
teners would choose. However, we assume that discrepancies
between ground-truth tempo and human perception correspond
to a focus on a different metrical level, i.e., a ratio of 2 or %
for duple meter music and a ratio of 3 or % for triple meter
music. This assumption is ubiquitous in all previous evaluation
attempts; see Subsection V-A for further discussion.

In addition, the robustness of algorithms to sound distortion
was evaluated on a part of the test data: the 465 song
excerpts. Test instances were distorted by several processes:
downsampling/resampling, GSM encoding/decoding, filtering,
volume change and addition of reverberation and white noise
(with a signal-to-noise ratio of 20 dB). The scripts are available
on the contest webpage.

IV. RESULTS
A. Accuracy measures and robustness to noise

Figure 2 presents the algorithms ordered alphabetically:
(1) is AlonsoACF, (2) is AlonsoSP, (3) is DixonACF,
(4) is Dixonl, (5) is DixonT, (6) is Klapuri, (7) is
Scheirer, (8) is TzanetakisH, (9) is TzanetakisMM,
(10) is TzanetakisMS and (11) is Uhle. For each algo-
rithm, accuracy 1 and 2 are given, in light and dark shadings,
respectively, for the whole data set and each of the 3 subsets.

9Giorgos Emmanouil of the UPF
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Fig. 1. Histograms of ground-truth tempo values in 10 BPM steps

Figure 3 illustrates the loss of accuracy for each algorithm
when distortion was applied to the songs data set as detailed
above. Clearly, algorithms (1), (2), (4) and (5) suffer more
from distortions than other algorithms.

1) And the winner is.... The performance measures accu-
racy 1 and 2 were the criteria used to determine the contest
winner. As can be seen in Figure 2, the algorithm Klapuri
outperformed the others with respect to these measures on all
data sets. It was also the best algorithm with respect to noise
robustness (see Figure 3).

2) Statistical significance: One must keep in mind that,
because of the restriction to a specific data set, the num-
bers reported in Figure 2 are just estimates of the true
(but unknown) algorithm accuracies. Therefore, in addition to
providing success rates for each algorithm, it is important to
consider whether the observed differences in performance are
statistically significant or arise by chance.

As the algorithms are all tested on the same instances, we
cannot assume that, for a given instance, the failures of differ-
ent algorithms are independent. On the other hand, it seems
reasonable to assume that errors made by a specific algorithm
on different instances are independent. Hence, McNemar’s

Ballroom data ( N = 698 )
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statistical test seems appropriate [17].

According to this statistical test, the observed difference
(of around 1%) in accuracy 1 between AlonsoACF and
DixonT would arise by chance on 19% of occasions, this
difference is therefore not statistically significant (considering
a p-value of 0.01 as the threshold for statistical signifi-
cance), and it is better to conclude that both algorithms
have similar performance. Similarly, observed performance
differences between AlonsoSP and DixonACF (less than
3%), AlonsoSP and Scheirer (less than 2%), DixonACF
and Scheirer (1%), Dixonl and TzanetakisMM (1%),
Dixonl and TzanetakisMS (less than 2%), DixonT and
TzanetakisH (less than 2%) and TzanetakisMM and
TzanetakisMS (less than 1%) are not statistically signif-
icant, setting the threshold for significance to a p-value of
0.01.1° The differences between all remaining pairs of algo-
rithms are representative of genuine performance differences.

Regarding accuracy 2, solely the differences between
AlonsoACF and TzanetakisMS (less than 3%),
AlonsoSP and Scheirer (less than 2%), Dixonl

10They correspond respectively to P-values of 0.02, 0.16, 0.46, 0.25, 0.5,
0.13 and 0.5.
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Ballroom data ( N = 698)
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Fig. 2. Accuracies 1 (light) and 2 (dark) on the whole data set —2(a)-, the ballroom data set —2(b)—, the loops data set —2(c)- and the songs data set —2(d).

and DixonT (less than 1%), DixonT and Uhle (less
than 2%) and TzanetakisH and TzanetakisMS (less
than 1%) are not significant.’* The differences between all
remaining pairs of algorithms are statistically significant.

3) Computation time: Another interesting aspect of the
algorithms is the computational resources they require. It
can be expressed as processing time divided by excerpt
length:1?> Dixon|1 takes approximately 0.02 times the excerpt
length to estimate its tempo, DixonT, Uhle, AlonsoSP
and AlonsoACF approximately 0.1, Scheirer approxi-
mately 0.4, Klapuri approximately 0.5, DixonACF ap-
proximately 1 and TzanetakisH, TzanetakisMM and
TzanetakisMS approximately 2. (Note that the participants
were not instructed to optimise computational efficiency when
submitting the algorithms.)

In the following sections, we provide a more detailed
analysis of the results, done after the publication of the contest
results in October 2004.

11p-values of 0.03, 0.09, 0.18, 0.03 and 0.26
12 |gorithm computation times are approximately proportional to excerpt
length.

B. Error analysis

1) Accuracy vs. precision window width: Figure 4 plots
the relationship of algorithm performance to precision window
width. The choice of 4% precision in accuracies 1 and 2 is
somewhat arbitrary. In the literature, other values have been
advocated; for instance, Klapuri et al. [12] propose a precision
of 17.5% of ground-truth tempo. The amount of tempo varia-
tion in the data is an important factor to consider in setting the
precision. Since we are dealing with basically constant-tempo
data, a small precision window seems appropriate.

2) Tendencies towards integer ratio errors: Figure 5 shows
the type of errors made by the contest winner (Klapuri).
Figure 6 shows the same information plotted against tempo.
One can see on the one hand that the most common errors
are doubling and halving of tempo, and on the other hand
that it shows a “moderate tempo tendency”, i.e. a tendency
to estimate half the tempo for fast pieces and the double for
slow pieces. We remark also that it estimates incorrectly (with
respect to accuracy 1) all pieces whose tempi lie outside the
rough limits of 60 to 160 BPM. This is due to the explicit
modelling of a prior probability function for the tactus [12],
[18].
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Songs dataset (N = 465)
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Fig. 3. Effect of instance distortions on accuracy 2, dark bars for clean data,
light bars for distorted data.
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Regarding the other algorithms, inspection of their error
histograms also shows clearly that, as expected, halving and
doubling of tempo are the most common errors. On the other
hand, Klapuri seems to be the only algorithm that clearly
shows a moderate tempo tendency. With the exception of
Klapuri and Scheirer, all algorithms tend to “tap too
fast” rather than too slow. For instance, as can be seen in
Figures 7(a) and 7(b), DixonT has a very clear tendency
towards faster metrical levels.

Other typical error factors are % and % as seen, for example,
in the peaks around -0.58 and 0.41 on the (logarithmically-
scaled) X-axis of Figures 7(a), 7(b) and 7(c). An error of % in
the tempo estimation represents an errors of 2 in the inter-beat
interval, that is, a focus on e.g. the dotted quarter-note instead
of the half-note, while a tempo error of g represents a focus
on e.g. the dotted-quarter note instead of the quarter-note.

Algorithms also sometimes estimate % of the correct tempo.

Klapuri
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See, for instance, the peak around -1.58 in Figures 7(c) and
7(a). This error factor, as well as 3 and % are typical of
triple and compound meter pieces (e.g. Waltz in the Ballroom
data set). We found relatively few of these errors, presumably
because relatively few such pieces are present in the test data
set.

3) Algorithm performance “niches™: It is interesting to
consider whether specific algorithms, regardless of their over-
all performance, show unique performance on some particular
data. Indeed, an algorithm which performs worse than all other
algorithms on many problems, but solves a few problems that
no other algorithm solves, would be valuable if these special
cases could be identified.

There are 41 pieces (3 ballroom, 35 loops and 3 songs)
whose tempi were correctly computed by all 11 algorithms.
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On the other hand, 176 pieces (11 ballroom, 162 loops and
3 songs) were incorrectly processed by all algorithms, with
respect to both accuracy 1 and accuracy 2. Finally, there are
29 pieces whose tempi were correctly computed by a single
algorithm. No clear explanations for these cases have been
found.

Another way to thoroughly inspect the results is to compare
pairs of algorithms. For instance, Figure 8 shows a compar-
ison between Klapuri and DixonACF. For each data set,
instances have been ordered with respect to increasing error
made by Klapuri, where the error is computed as follows:

abs(log2(computedT empo/correctTempo)).

The performance of both algorithms is given for each instance,
permitting a visual comparison of algorithms on an instance
by instance basis. Three main trends are apparent: many cases
of agreement between the algorithms, for correct and incorrect
tempo estimates; cases where one algorithm is correct and the
other has a halving or doubling error; and cases where both

algorithms are incorrect, and one algorithm has double the
tempo of the other.

For example, in the ballroom data, DixonACF solves quite
a few doubling and halving errors that Klapuri makes (see
the cluster of points around the error value of 0 for indexes
between 500 and 698), but on this very data it also makes quite
a few doubling or halving errors where Klapuri estimates
the correct tempo. This is also true of the loops data set
(indexes between around 2500 to 2734), but not the songs
data set, where DixonACF makes many doubling and halving
errors (this can also be seen in Figure 2(d), third bar pair from
the left). On the other hand, DixonACF seems to solve some
non-integer ratio errors that Klapuri makes, especially in
the loops data set (indexes between around 2100 and around
2500, where Klapuri’s error on the Y-axis is between 0 and
1). Note that the apparent mirroring of error values (reflection
in the line y = 0.5) is an artifact of the representation,
which occurs when one algorithm has a log error e, where
—1 < e < 0, and the other algorithm has double this tempo,
hence a log errorof e’ =e+1=1— |e|.

Figures such as Figure 8 can be generated for any pair
of algorithms. They show on an instance by instance basis
which errors an algorithm makes that another one does not
make. We can then track down single files for which a
specific algorithm has a particular advantage over another
one. Cases where several algorithms make the same error
could be used to identify interesting (“pathological”) test
cases for further investigation, general weaknesses in current
tempo induction systems, and errors in annotation. However, in
order to draw conclusions about error trends, or alternatively,
specific “skills” or “performance niches” of algorithms, much
more test data is needed, together with richer metadata. Indeed,
it is difficult to make any valid conclusion just by listening to
or examining specific test cases.

C. Redundant approach to tempo estimation

Having several algorithms performing the same task and
exhibiting specific performance on specific parts of the data, an
important question arises: Can we improve the tempo estima-
tion accuracy by combining the outputs of several algorithms?
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The answer seems to be “yes”, although it should be noted that
simply computing e.g. the median of the tempo estimates of
different algorithms does not yield an improvement. This is
because the “too slow” and “too fast” tempo estimates cannot
be guaranteed to balance each other out.

A thorough analysis of algorithm skills and error trends
would dictate a set of rules for combining algorithms. Lack-
ing this information, we propose in the following a voting
mechanism for combining the tempo estimates of different
algorithms. A tempo estimate gets one vote from all the
algorithms that agree with it. An algorithm X is defined to
agree with an algorithm Y if the ratio of their estimates is 1,
0.5, or 2, with 4% precision. The tempo estimate which gets
the largest number of votes among the algorithms is selected
as the output. If several algorithms receive the same number
of votes, the order of the algorithms in the list of estimates
defines the priority of the votes.

An exhaustive search over all possible combinations of
five algorithms (from among the 11) was made to find a
combination which performs best using the voting mechanism.
Applying the accuracy measure 1, the algorithms [6,11,6,4,3]
achieved 68% performance and, applying accuracy measure
2, the algorithms [6,7,5,4,3] achieved 86% performance. This
does not represent a significant improvement compared to the
performance of the method 6 alone (67% and 84% according
to the accuracy measures 1 and 2, respectively). However, the
situation becomes clearer when method 6 is excluded. In this
case, the algorithms [11,7,4,3,5] together achieve a rate of 57%
with accuracy 1 and the algorithms [7,11,5,3,3] achieve a rate
of 84% with the accuracy 2. Compared to the best individual
performances among the remaining algorithms (method 11
achieves 51% with accuracy 1 and method 3 achieves 81%
with accuracy 2), the voting mechanism makes a statistically
significant improvement to the individual results.

The described experiment is an example of a “redundant”
approach to music content analysis: instead of designing one
very complex algorithm we combine a number of different and
more simple mechanisms. This idea stems from Bregman, who
pointed out that human perception appears to be redundant at
many levels: there are several different processing principles
serving the same purpose, and when one of them fails, another
succeeds [19].

V. DISCUSSION

Let us now discuss further these results and the evaluation
benchmark itself.

A. On accuracy measures

Accuracy 2 was designed to account for the inherent fuzzi-
ness of the tempo induction task: two listeners might not
agree on a metrical level as the “correct” tempo. However,
its drawback (in our use of it) is that it does not take the
meter into account. Considering half and double ground-truth
tempo as correct makes sense solely for duple meter instances.
Similarly, considering three times and % of ground-truth tempo
as correct makes sense solely for instances with a triple or

compound meter. The meter is not available with the data

used here. We therefore considered half, double, three times,
and % of ground-truth tempo as correct. However, the test data
does not contain many triple or compound meter pieces, so the
inclusion of the factors 3 and % in the computation of accuracy
measure 2 was perhaps not justified.

Klapuri et al. [12] propose a precision of 17.5% of ground-
truth tempo in the evaluation of tempo induction algorithms.
One reason to choose such a wide precision window is the
approximate nature of ground-truth annotations. Figure 4 does
not indicate any significant difference between this percentage
and the 4% precision used here. However, 4% is probably
the lowest precision level that should be considered as the
Just-Noticeable Difference (JND) for tempo differences is
approximately 4% for music.

B. Onsets vs. frame features

In Figure 3, we can see that algorithms (1), (2), (4) and
(5) clearly suffer more from distortion of the signal than other
algorithms. These 4 algorithms are the only ones that attempt
to detect onsets of discrete sound events as a first step. All
others measure some physical feature in the input signal in a
more continuous (frame-based) manner.

Therefore, implementing a robust tempo induction algo-
rithm calls for the computation of low-level frame features
rather than that of onset lists as the first processing block.
However, whether this is perceptually more valid (as proposed
in [11]) remains to be investigated.

C. Towards better benchmarks

1) Beat tracking: Tempo induction and beat tracking are
really part of the same perceptual process, therefore future
evaluation efforts should consider them jointly.

2) Data: More data is needed for future contests. Impor-
tantly, a larger amount of data with triple and other meters
is required. However, not all music is suitable. As discussed
and exemplified in [6], test instances can show diverse lev-
els of difficulty. It may be difficult to induce or track the
tempo of specific musical pieces, even from constant-tempo
performances, if they have a complex rhythmic structure (e.g.
many events not on beats, or many beats occurring between
musical events), while other pieces may be fundamentally less
challenging. Additionally, in the case of performed music,
keeping an almost steady tempo or adding expressive tempo
variations is up to the performer. For instance, results here are
better on ballroom data; this was predictable as this is dance
music, which has relatively clear beats and stable tempo.

Therefore, measuring the level of “rhythmic difficulty” of
the instances in the test set might provide an additional control
for thorough evaluations. Goto and Muraoka [4] and Dixon [6]
propose such metrics.

3) Robustness tests: Other robustness tests are needed, for
instance, robustness to increasing level of noise (decreasing
SNR) and robustness to cropping (the effect of the length of
the excerpt).
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4) Better annotations and evaluation measures: It is dif-
ficult to evaluate the accuracy of an algorithm for determin-
ing the correct tempo because of the inherent ambiguity of
metrical levels. In future contests, more accurate evaluations
might be obtained by considering the “degree of ambiguity”
of excerpt tempi. This could be done by recruiting several
annotators (e.g. 3 or 4) for each piece and considering several
metrical levels as valid options only in cases where annotators
disagree on the tempo. This procedure could also tell us which
levels are valid for each instance. This is however a very time-
consuming procedure.

A faster way to proceed to more precise evaluations would
be to manually annotate beats of each test instance at 2
different metrical levels instead of one, or to annotate the
metrical structure. A single person would suffice for annotating
each instance. For each instance, the accuracy measure of an
algorithm would be the best match over the annotated metrical
levels.

One might object that, for a given instance, two algorithms
might not be evaluated with respect to the same metrical level.
Nevertheless, both levels have been considered valid by the
annotator. And we can assume that, in tempo-ambiguous cases,
any two listeners would perceive at least one level in common.
Presumably, solely the rankings of metrical levels would differ.
Consider the following example: a piece of music whose levels
all share duple relationships, to which listener A taps the beat
at 50 BPM. Being asked to define another level, he chooses
100 BPM (it is highly unlikely that he would choose 25 BPM
which is too slow to be a perceptually valid tempo). Say that
listener B naturally taps the beat at 200 BPM, being asked
to define another level, he will most likely choose 100 BPM
(not 400 BPM). Even in this extreme case, there exists some
agreement. Thus, this procedure would be a way to measure
how close a specific algorithm gets to human agreement
regarding tempo perception. Such annotations could be done
with the help of annotation tools as proposed e.g. in [9] and
[20].

5) More modular evaluations: It is difficult to compare
systems that, even if they implement similar concepts, do not
share any piece of code. The performance of each system
depends on the overall implementation and it is often hard
to say anything more than “system A performed better than
system B (on this data set).” That is, we are unable to
say anything conclusive about the system submodules (for
instance, whether frame differentials are better than absolute
values), without being able to switch the submodules within a
single system. On the other hand, it would be difficult to im-
plement different systems in a common software framework so
that they share simple processing blocks. Indeed, researchers
have their programming habits and forcing the use of such
a framework would probably have negative repercussions in
terms of the number of contest entries.

In the evaluations detailed above, different system variants
from the same participant (Alonso, Dixon or Tzanetakis)
give the most reliable information about the effect on the
performance of different solutions for a given submodule of
the system. A solution could therefore be to motivate partici-
pants to submit several systems, with small, but conceptually
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relevant, variations in some submodules.

Another important aspect concerns the availability of the
source code. It is clear that better evaluations, and better un-
derstanding of the very problem, will take place if researchers
make their algorithm code public to the scientific community.

D. Open issues

In future contests, with more data, better annotation, more
elaborate robustness tests and evaluation measures and most
importantly more modular evaluations, it would be possible to
evaluate the following open issues more thoroughly:

1) Periodicity detection before or after multiband inte-
gration?: Current literature advocates the use of multiband
processing and subsequent integration of periodicity estimates,
rather than periodicity estimation after the integration of a
signal processed in several frequency bands. For example,
Scheirer argues that “a rhythmic processing algorithm should
treat frequency bands separately, combining results at the end,
rather than attempting to perform beat-tracking on the sum of
filterbank outputs” [11].

The  difference  between  TzanetakisMS and
TzanetakisMM lies precisely in the integration of several
frequency bands respectively before or after periodicity
estimation. The algorithms exhibit similar performance when
assessed with accuracy 1, but the former performs around
5% better than the latter with respect to accuracy 2. It is
difficult to make any solid conclusion and confirm or refute
Scheirer’s point from these results. Let us however outline a
few aspects of these methods: Estimating periodicities after
multiband integration enhances periodicities that are present
in all bands, while periodicity estimation before multiband
integration favours signals whose periodicities appear solely
in a restricted frequency region. Also, the former method has
a bias towards fast metrical levels; indeed, it accounts for
the phase of periodicities while the latter does not. Consider
for example the case where two bands have the same
periodicity but have a phase difference of half the period: the
former method yields double the period of the latter. This
is verified on the data used here: TzanetakisMS makes
more double-tempo errors than TzanetakisMM.'® One can
argue that each method is more suitable for different types
of data. Further evaluations are required before more general
conclusions can be drawn.

2) Which frequency decomposition?: Scheirer argues that
his algorithm “is not particularly sensitive to the particular
bands” [11]. That is, the important point is to proceed to
a frequency decomposition, and not the particular choice of
decomposition.

However, let us consider the algorithms that compute pe-
riodicities in frequency subbands (DixonACF, Klapuri,
Scheirer and TzanetakisMM). They all use energy (or
integrated amplitude) features. Of course, the performance of
each system depends on the overall system, so it is hard to say
anything conclusive about the best frequency decomposition
(as indeed about any of the submodules). However, the fact

13Note that accuracy 2 does not considered them as errors
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that these systems show non-negligible differences in perfor-
mance suggests that the definition of the frequency filterbank
could be a significant issue, contrary to Scheirer’s observation.

Further, many features other than energy could be computed
on signal frames. Energy could also be normalised (or not) in
each frequency band. This also suggests that more research is
needed on the definition of relevant rhythmic features.

3) Frame values vs. differential values: Some pulse induc-
tion algorithms focus on energy values (e.g. Tzanetak i sMM)
while others focus on changes from one frame to the next
(e.g. estimating the derivative of frame energy values, e.g.
Klapuri, or of the downsampled amplitude envelope, e.g.
Scheirer). The derivative can be estimated by a first-order
differentiator filter (as for Scheirer) or more accurately as
proposed in [8]. If, as Klapuri claims in [12], we assume that
the difference between the use of the autocorrelation and that
of comb filterbanks for pulse induction is not crucial in the
performance of a tempo induction system, the performance of
Scheirer vs. that of TzanetakisMM* seems to indicate
that changes in energy values are more valuable rhythmic
features than the energy values themselves. However, here
also, a solid conclusion would require implementations to
differ solely in this aspect.

4) Which pulse induction method?: There are significant
differences in the accuracies obtained by AlonsoSP and
AlonsoACF, which differ solely in the pulse induction block.
The spectral product outperforms the autocorrelation on all
data sets and all accuracy measures.*® This finding should
be verified on other data sets, as Alonso’s results [8] seem
to indicate different conclusions. A comparison with a comb
filterbank method (used by the contest winner) would also be
interesting.

5) Induction vs. tracking: It is sometimes hypothesised that
in order to compute a tempo value that best reflects human
perception of the musical pace, it would be better to consider
the whole tracking process rather than rely solely on tempo
induction [21]. Performance differences between DixonT and
Dixonl are not really conclusive in that respect. On this point
also, more research is needed.

A short comment should also be made regarding the back-
end added to Scheirer’s output. The final tempo was taken
to be the resonance frequency of the filter with the highest
instantaneous energy at the end of the whole sound file
analysis. One might wonder whether this is being unfair to
this algorithm. On the one hand, if the analysis fails at the
very end of the sound file, the overall tempo might be wrong
while most beats were correctly tracked. On the other hand,
the rather slow exponential decay used by this algorithm tends
to yield more reliable estimates at the end of the file than at
the beginning (at least with constant-tempo data, as used here).

6) Joint estimation of several metrical levels: Three al-
gorithms (Klapuri, Uhle and DixonACF) implement, in
different ways, influential schemes for the determination of
3 metrical levels. As they all perform very well, it seems

14Respectively 37% vs. 30% with accuracy 1 and 68% vs. 50% with
accuracy 2
B5Note that it is however more sensitive to distortion
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interesting to evaluate more methodically the effect of this
feature.

Similarly, the relevance of the “moderate tempo tendency”
that has to be considered when focusing simultaneously on
several levels, and often modelled with a prior tempo proba-
bility function (as in [18]), should also be the object of further
research.

7) Redundant approach: From the results presented in
section IV-C, it appears that combinations of algorithms can
perform better than any single algorithm. This is an interesting
avenue for future work and raises the following interesting
questions: Which commonalities and differences should we
implement in the concurring algorithms? How simple should
we keep these algorithms? What is the best way to combine
algorithms?

V1. SUMMARY

Quantitative comparisons of tempo induction algorithms
are largely absent from the literature. The contest reported
in this document was aimed at promoting more systematic
evaluations. It is our hope that the contest results, data and
annotations may be useful in developing future benchmarks.

This evaluation showed that, for music with almost constant
tempo, tempo induction is feasible with around 80% accuracy
and a relatively good robustness to distortion, if we do not
insist on finding a specific metrical level. Anssi Klapuri’s
algorithm is (at the time) the best among the state-of-the-art. It
also showed that the most common errors that all algorithms
make are in the choice of metrical level. The majority of
algorithms tend to tap too fast rather than too slow. Tests
of robustness to signal distortions showed that robust tempo
induction entails the processing of frame features rather than
that of onset lists.

However, emulating the perception of tempo by humans
is still an unsolved problem. Inducing the basic tempo from
arbitrary audio signals, without accepting alternative metrical
levels, is not a solved issue, and many aspects call for further
research. Here is a (non-exhaustive) list of open issues.

Should periodicity detection be performed before or af-
ter multiband integration? Which frequency decomposition
is most appropriate? Which rhythmic features are the most
relevant to compute from audio as a first processing step? Is
it better to use absolute frame values or differential values?
Which pulse induction method performs best? Is it better
to consider the whole tracking process rather than relying
solely on tempo induction, in order to better emulate human
perception of the musical pace? Should several metrical levels
be estimated jointly? What is the effect of implementing
a moderate tempo tendency? How can we combine several
algorithms effectively?

With this article, we wish to stimulate future benchmarks.
For these, we argue that beat tracking should be evaluated
jointly with induction and that better annotations, more ro-
bustness tests, better evaluation metrics and more modular
evaluations are needed. Additionally, there is little doubt that
the quality of research in tempo induction and beat tracking
will continue to rise as the community makes the additional
effort of data sharing and source code availability.
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