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ABSTRACT Sinusoidal modeling is a technique for analysis and syn-

) _ _ thesis where sound is modeled as the summation of sine waves
The goal of computational auditory scene analysis (CASAharameterized by time-varying amplitudes, frequencies an
is to create computer systems that can take as input a Migpases. In the classic McAulay and Quatieri method [4] these
ture of sounds and form packages of acoustic evidence SUge varying quantities are estimated by performing a short
that each package most likely has arisen from a single soungine Fourier transform (STFT) and locating the peaks of the
source. We formulate sound source tracking and formation agssociated magnitude function. Partial tracking algarith
a graph partitioning problem and solve it using the normalcap then be used to track the sinusoidal parameters fronefram
ized cut which is a global criterion for segmenting grapla th 15 frame, and to determine when new partials begin and exist-
has been used in Computer Vision. It measures both the totglg ones terminate. If the goal is to identify potential sdun
dissimilarity between the different groups as well as thalto goyrces then a separate stage of partial grouping is needed.

similarity within groups. We describe how this formulation ypically perceptual grouping cues such as common onset
can be used with sinusoidal modeling, a common techniqugme and spectral proximity are used.

for sound analysis, manipulation and synthesis. Several ex

amples showing the potential of this approach are provided. " this paper we use the term sound source formation and

tracking to refer to these two processes of connecting peaks
Index Terms— auditory scene analysis, sinusoidal mod-over time to form partials (tracking) and grouping them to
eling, sound source tracking, normalized cut form potential sound sources (formation). They roughly cor
respond to the simultaneous and sequential aspects of orga-
nization described by Bregman [1]. Although typically im-
plemented as separate stages these two organizational prin
- _ ciples directly influence each other. For example if we have
A fundan_w_ental chara_cterlsnc of the human hearing SySterRnowledge that a set of peaks belong to the same source then
IS the ability t(.) selectively attend to different sound.mm their correspondence with the next frame as easier to find.
in complex r_mxtures of sognds such as speech with mUItI'Similarly the formation of sound sources is easier if peaks
ple overlapping speakers in *natural” environments or MU%an be tracked perfectly over time. Methods such as [5, 6]

S,I:S AThbiS |\F;|r0(§$|s S hars1 t:ee_nttirlrl;m:tiBitory Scenle Analysis that apply these two stages in fixed order tend to be brittle as
( ) by McGill psychologis ert Bregman [1[Compu- they are sensitive to errors and ambiguity. To cope with this

tational Auditqry Scene Analys(QASA) refers to fche pro- chicken-and-egg problem we show how both sound source
cess of modeling ASA_‘ c_omputatlonally [2]. Ef‘fec.t|.ve C_:ASA_‘ tracking and formation can be jointly optimized within a-uni
systlems would result N improved spegch recognition IMNOISfiad framework using the normalized cut criterion.
environments and facilitate the analysis of complex auidjo s
nals such as music or bioacoustic signals. Humans use a vari- e model the problem as a weighted undirected g@ph

ety of cues for perceptual grouping in hearing such as simila= (V.E), where the nodes of the graph are the peaks of the
ity, proximity, harmonicity and common fate. However many Magnitude spectrum and an edge is formed between each pair
of the computational issues of perceptual grouping for-heaof nodes. The edge weight(i, j), is a function of the sim-

ing are still unsolved. Theormalized cuts a global criterion  ilarity between nodes and j and utilizes various grouping

for graph partitioning that has been proposed for solving si cues such as frequency and amplitude proximity. We use the
ilar grouping problems in computer vision [3]. term formation rather than separation as our goal is not-to re

cover the original sound sources that comprise the mixtutre b
Thanks to NSERC and SSHRC for their support of this work. rather to provide an intermediate representation for sound

1. INTRODUCTION




2. RELATED WORK whereasso(X,V) = 37 cx v w(u,t) is the total of
the weights from nodes in cluster X to all nodes in the graph.

The normalized cut criterion for graph partitioning was-ini An analogous measure of the association within clusteheis t
tially proposed for image segmentation [3]. It is a represenfollowing (N asso):

tative example of spectral clustering techniques whichawmse

affinity matrix W to encode topological knowledge about a

problem. Spectral clustering approaches have been used in a

variety of applications including high performance comput

ing, web mining, biological data, image segmentation anavhereasso(X, X) is the total weight of edges connecting

motion tracking. There are few applications of spectras¢lu nodes within cluster X. We note the following relationship

tering to audio processing that we are aware of. In thissecti betweenN cut andNasso:

they are briefly described and we contrast them with our ap-

proach. Ncut(A,B) =2 — Nasso(A, B) 3)
Spectral clustering has been used for blind one-microphone

Speech Separation [7] Rather than bu||d|ng Speciﬁc Speech Hence, the attempt to minimize the disaSSOCiation betWeen

models, the authors show how the system can separate misdusters is equivalent to maximizing the association withe

tures Of two Speech Signa|s by |earning the parameters Df afﬁ clusters. The formulation of th& cut measure addresses the

ity matrices based on various harmonic and non-harmonieias toward partitioning out small sets of isolated nodes in

cues. Rather than sound source separation the focus of o@f@Ph which is inherent in the simpler minimal cut disassoci

work is the formation of an intermediate audio represeoati ation measurec{ut):

[8] that combines ideas from sinusoidal partial tracking an

grouping. Another important difference is the use of sinu- cut(A,B)= > w(u,v) 4)

soidal modeling as a front-end rather than the entire STFT u€AveEB

magnitude spectrum. This results in more accurate and ro-

bust similarity relations as well as significantly small&ma

ity matrices that are computationally more tractable.
Another use of spectral clustering methods for audio pro

cessing has been the unsupervised clustering of similadsou

asso(A, A) n asso(B, B)
asso(A,V) = asso(B,V)

Nasso(A, B) = 2

The hierarchical clustering of the data set via the mini-
mization of theN cut measure, or the equivalent maximiza-
tion of the Nasso measure, may be formulated as the solution
to an eigensystem. One of the advantage of the normalized
ing segments of audio [9, 10]. Each audio frame is charSUt Over (_:Iusterin_g algorithms such as Kfmea_ns or mixturgs
acterized by a feature vector and a self-similarity matsix i of Gau55|aqs estimated by the E_M algorithm is that there.ls
constructed and used as the basis for clustering. This aH—O assumption of convex shapes in the feature represemtatio

proach has also been linked to the singular value decompo-

sition of feature matrices to form audio basis vectors [11]. 4. SOUND SOURCE FORMATION AND TRACKING
all these approaches the audio mixture is characterizég-sta

tically without any attempt to use spectral clustering fonfi-  Sinusoidal modeling aims at representing a sound signal as

ing and tracking individual sound sources. a sum of sinusoids characterized by amplitudes, frequsncie
and phases. A common approach is to segment the signal into
3. THE NORMALIZED CUT successive frames of small duration so that the statignarit

assumption is met. The discrete signé(n) at frame index
The normalized cut algorithm, presented in [3], aims to par# is then modeled as follows:
tition an arbitrary set of data points intoclusters. The data N
set is modeled as a complete weighted undirected g@aph & d & 2T &
(V, E), the nodes representing the data points and each edge #*(n) = ) aj cos (E fr-n+ ¢l) )
weightw (%, j) representing the relative similarity between the =1
two end nodes and;. The graph is represented internally by
an affinity matrix, W, that specifies all edge weights. The par
titioning is achieved by recursively dividing one of the eon
nected compon_ents of the_ gr_aph mto_two_u_mtl_bomplete Iplitude. Both are considered as constant within the frame.
compone_nts exist. _The Crltgrlon_ that is mln_lmlzed in _orde For each framek, a set of sinusoidal parametes§ —
to establish the optimal partitioning at any given leveliis t (ph, - ,plzk} is estimated. The system parameters of this

normalized cut disassociation measuke-(1): Short-Term Sinusoidal (STS) mod&F are theL” triplets

pi = {fF,ak, ¢F}, often calledoeaks These parameters can
cut(A, B) cut(A, B) 1) be efficiently estim.ated by picking some local maxima from
asso(A,V) ' asso(B,V) a Short-Term Fourier Transform (STFT).

where F is the sampling frequency angf is the phase at
the beginning of the frame of theth component of.; sine
waves,f;* anda;* are respectively the frequency and the am-

Ncut(A,B) =



The precision of these estimates is further improved usinjy [SN [VS [VX |[VN [SV [SN |
phase-based frequency estimators which utilize the oglati [ MQ [7.16 [-11.40] -9.89] -5.28] 10.77] 6.36 |
ship between phases of successive frames [12]. Using this A 7255 | 2.86 559 | 312 | 277 | 328
enhanced frequency, the rough amplitude estimate provided MA 6.05 | 3.05 101 1312 | 149 | 597
by the magnitude of the local maximum is also corrected. = 8.36 | 1.00 101 | 351 | 1.49 | 625

In order to simultaneously optimize partial tracking and FBrk 8.57 | 1.00 1.01 | 339 | 1.49 | 6.79
source formation we construct a graph over the entire durati AF 8.28 | 2.92 171 1371 | 269 | 7.81
of the sound mixture of interest. Unlike approaches based gn MA.F 8.80 | 1.00 101 | 332 | 149 | 8.77
local information [4] we utilize the global normalized cut-c H -4.79| 1.00 101 1312 | 149 | 597
terion to partition the graph. Each partition is a set of geak AFH | 7.94 | 1.00 101 1312 | 149 | 597
that are grouped together such that the similarity withim th AFH(2) | 6.05 | 1.00 101 | 312 | 149 | 5.97
partition is minimized and the dissimilarity between diffe
ent partitions is maximized. The edge weight connecting two Table 1. SNR result for old+new interference
peaksp} andp!’ (k is the frame index antis the peak index)
depends on both frequency and amplitude proximity:

we cluster the entire clip into 5 clusters with using both the

W (pf'spi ) = We(pr's ) * Walpl', piv) (6)  “old” and “old+new” parts. Afterward, we identify the clus-
We use radial basis functions (RBFs) to model the frelers that have peaks in the initial “old” part and only use the
quency and amplitude similarities: peaks belonging to them to resynthesize the “old” part from

the “old+new”. The quality of the resynthesized “old” past i
s s an indication of the sensitivity of the tracking and fornoati
_ (M) _ (ﬂ) algorithm to the introduction of a new interfering sourcelan
W(pk,ph)=e o * e (7)  is measured as the Signal-to-Noise Ratio (SNR) between the
) o resynthesized “old” source and the original. To put our re-
Notice that edges are formed both for peaks within aframe, ¢ jn context we also use the classic McAulay and Quatieri

and peaks across frames and the number of peaks for €agfjy) [4] partial tracking technique and only keep partials
frame can be variable. We also use a variation of the ampligom, the initial “old” part in order to separate the “old” fro

tpde similarity weig_ht we te_rm mean scale(_j difference funcipe “old+new”. It is important to note that the MQ approach
tion (msdf). It considers pairs of high amplitude peaks mor,, nrovides information about tracking whereas the nérma
similar than pairs of low amplitude peaks that are equally di j,eq ¢yt approach also attempts to do source formation. Fig-
ferent from each other. The rationale is that high amplitudg,e 2 shows the clustering of several harmonics within the
peaks in audio tend to be more perceptually important. - g5 me source (an orca vocalization) in the presence of noise.

( ol o/ )2 f Table 1 p}rohvides SlNR Teasureme;ntstﬁing different con-
kK'Y _  \oa(aF+al) igurations of the similarity function. The following corve
Wansar (P11 ) = o ® tions are used for the measures and and their combinations:
In the results presented below we also incorporate into tha (amplitude),MA ( mean scaled amplitudef, (frequency),
similarity calculation harmonicity information. Theren®t  FBrk (frequency in Barks), and (harmonicity). The columns
enough space to describe the method in detail but the basi@rrespond to different configurations of old+new mixtures
idea is to try to increase the similarity of sounds that have=or exampléSNmeans an harmonic sweep (old) that is mixed

shared harmonic peaks. after 20 frames with noise (old+new). They aBharmonic
sweep)V(violin), X(sax), and\(noise). The number of clus-
5. EXPERIMENTS ters is set to 5 except the FH(2) entry which is 2. For the

resynthesis we select only the clusters that are presehein t
For the experiments described in this section the frame sizeld part before the introduction of the new. These results in
is 2048 samples with a hop size of 360 samples at 44100H#cate that our approach can perform tracking of partias th
sampling rate. For each frame a set of spectrum peaks aigequally good or better than local partial tracking (MQ). |
selected up to a maximum of 20 selected by decreasing amaddition it also performs grouping of the peaks for source fo
plitude. We utilize an experimental setup inspired by themation. Figure 1 shows the results of our proposed approach
“old+new” heuristic described by Bregman [1]. Each samplg(filled circles on top) and classic MQ tracking (connectes ci
is created by mixing two sound sources in the following way:cles at bottom) with only the 10 highest amplitude partials
for the first 20 frames only the “old” sound is played followed represented by solid lines. Because of the local natureeof th
by the addition of the “new” sound (old+new). The idea is toMQ approach it can not group the harmonic partials across
use knowledge obtained from the “old” source to separate thigequency, time and through the noise bursts that our approa
“old” from the “old+new” mixture. In the normalized cut case does.
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Fig. 2. Orca Vocalization tracked using the normalized cut

[4]

[5]

Fig. 1. Sweep through Noise using the Normalized Cut (top) [6]

and McAuleyQuatieri tracking (bottom)

6. FUTURE WORK

[7]

We believe our work shows the potential of using the nor-
malized cut criterion for simultaneous sound source forma- 8]
tion and partial tracking. There are many directions for fu-
ture work. We plan to explore the use of additional cues such
as common onset and common fate for the similarity calcu-[9]
lations as well as incorporate time decay and windowing to

handle longer time scales. Another interesting directiahé

use of prior models to inform the sound formation [13]. Fi-
nally we are exploring the use of intermediate time-freguyen
representations calculated using our method as a fronfeend

(10]

applications such as speech enhancement, bioacoustis (se

Figure 2), and music information retrieval.
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