Ultra Fast Cycle-Accurate Compiled

Emulation of Inorder Pipelined Architectures
*

Stefan Farfeleder Andreas Krall

Institut fiir Computersprachen, TU Wien

Nigel Horspool

Department of Computer Science, University of Victoria

Abstract

Emulation of one architecture on another is useful when the architecture is under
design, when software must be ported to a new platform or is being developed for
systems which are still under development, or for embedded systems that have in-
sufficient resources to support the software development process. Emulation using
an interpreter is typically slower than normal execution by up to 3 orders of mag-
nitude. Our approach instead translates the program from the original architecture
to another architecture while faithfully preserving its semantics at the lowest level.
The emulation speeds are comparable to, and often faster than, programs running
on the original architecture. Partial evaluation of architectural features is used to
achieve such impressive performance, while permitting accurate statistics collec-
tion. Accuracy is at the level of the number of clock cycles spent executing each
instruction (hence the description cycle-accurate).

Key words: instruction set emulator, interpreter, compiled emulation, pipelined
VLIW architecture

* This research was supported in part by Infineon and the Christian Doppler

Forschungsgesellschaft
Email addresses: stefanf@complang.tuwien.ac.at (Stefan Farfeleder),

andi@complang.tuwien.ac.at (Andreas Krall), nigelh@cs.uvic.ca (Nigel
Horspool).

Preprint submitted to Elsevier Science 28 May 2007

1 Introduction

Emulation of instruction sets of different architectures is common. Originally,
all emulators were interpreter-based. An interpreter mimics the execution of
a standard computer by repeatedly fetching an instruction, decoding that
instruction, and then performing the actions implied by the instruction. The
implementation is straightforward and allows insertion of monitoring code
into the interpreter to gather any desired statistics. SimpleScalar and some
other modern emulators still use interpretation because it allows cycle-accurate
emulation of all features of today’s complex architectures, even when they
feature out-of-order instruction execution [1].

The biggest disadvantage with interpreters is their extremely slow execution
speed, which can be three to five orders of magnitude slower. Improving em-
ulation speed is clearly desirable. In this paper, we describe techniques which
achieve a speed-up by about three orders of magnitude — often making the
emulated program on a PC faster than on the original architecture.

In section 2, we discuss related work. The architecture of the simulated proces-
sor is introduced in section 3. In section 4 we present our solution of a compiled
emulation of a pipelined architecture where operations of an instruction are
distributed over different pipeline stages. The evaluation of the emulator is
contained in section 5.

2 Related Work

One technique for improving emulation speeds is memoization. With this
approach, micro architecture states and the resulting emulator actions are
cached. Then the emulation can be “fast forwarded” whenever a cached state
is reached. Schnarr and Larus [2] improved the speed of FastSim by a factor of
5 to 12 when emulating an architecture similar to a MIPS R10000. The speed
can be further improved by using subroutine threaded interpreters which cache
changed program parts [3].

Translating emulators are orders of magnitude faster than interpreters. Binary
translation was first used for functional simulation of other architectures. A
static binary translator takes a complete program, determines the program
structure and translates the program into an equivalent one on the host archi-
tecture. However, problems arise when indirect branches cannot be resolved
at compile time or self-modifying code is used. A solution is to combine the
translated program with an interpreter which is used in such cases. Binary
translators have been successfully used for the simulation of the IBM 370 ar-

chitecture [4] and for the migration of programs from the MIPS architecture
to the Alpha architecture [5]. In contrast, dynamic binary translators convert
short sequences of linear code into native code of the host architecture at
runtime. This is the approach used in the Transmeta Crusoe architecture [6].

Shade [7] performs functional emulation and instrumentation, where collecting
traces and similar information incurs a slowdown by a factor of 2.8 - 6.1.
Embra [8] is a functional CPU model in SimOS. It runs about 10 to 30 times
slower, using a scheme where target instructions are translated into the native
instructions of the host. Bintrans [9] is a retargetable binary translator. The
dynamic binary translator is automatically generated from a description of
the source and target architectures. These translators generate programs for
the target architecture which execute between 1.8 and 2.5 times slower than
the original program on the source architecture.

Binary translation is tied to a fixed host architecture. In contrast, compiled
emulation is a more flexible approach because it generates C (or some other
high-level) source code for the emulated program. The compiler can optimize
away most of the intermediate computations and thus improve performance.
Mills et al. [10] generate one function for the complete program implement-
ing branches by a switch statement. Amicel and Bodin [11] used assembly
language source as the input language and generated C/C++ machine code.
Retargetable compiled emulation has been successfully applied by Pees et
al. [12].

Compiled emulation can be combined with hardware system simulation. Schn-
err et al. [13] added FPGA boards for system simulation to a compiled instruc-
tion set emulator. With this extra help, they can emulate micro controllers in
real time.

Compiled emulation bears some resemblance to the reverse compilation of
assembly language programs to C. In [14], a control graph reconstruction al-
gorithm for the TT C6x signal processor family was presented. This processor
has a very long pipeline with explicit delay slots. Duplication of basic blocks
is necessary to resolve these delay slots.

3 The xDSPcore Processor Architecture

The simulated processor, xDSPcore [15], is a five-way variable-length very
long instruction word (VLIW) load/store digital signal processor (DSP) with
pipelined inorder execution. Up to five instructions are executed in each cy-
cle. It supports some common extensions for the DSP domain, such as SIMD
(single instruction multiple data) instructions, multiply-accumulate instruc-

tions, various addressing modes for loads and stores, fixed point arithmetic,
predicated execution, etc. The processor’s register file consists of two banks,
one for data registers, the other for address registers. Each data register is 40
bits wide, but can also be used as a 32 bit register, or as two registers of 16
bit width (“shared registers”, “overlapping registers”, “register pairs”).

A(] D1 DO |LO RO
All D3 D2 L1 R1
ATl [Di5 | D14 L7 [R7 |

Fig. 1. Register File

The xDSPcore is a pipelined architecture. Load and multiply instructions need
more than one execution stage. Register operands are read at the beginning,
and written at the end, of the pipeline stage where they are needed. Branch
instructions have two delay slots which can be filled with any instruction
bundle. The xDSPcore’s hardware loop instructions allow a fixed number of
repetitions of a fragment of code without having to manage the loop counter
in the code itself.

The xDSPcore processor can make two memory accesses per cycle if they are
to different banks, otherwise an additional memory access cycle is needed.
There is no data cache, but there is an instruction buffer. The instruction
buffer minimizes memory accesses and thus reduces power consumption on
the xDSPcore. The buffer has eight slots. Each slot holds one fetch bundle,
which consists of four instruction words, plus an executed bit. The executed bit
is set after all four of the instruction words have been executed. The slot can
be recycled and its contents overwritten by another instruction bundle only
after the executed bit has been set. The xDSPcore’s fetch unit reads one fetch
bundle per cycle and writes it in a round-robin manner to the next slot in the
buffer, omitting the write if that bundle is already cached or if the buffer slot
does not have its executed bit set. A second unit, the aligner unit, reads four
fetch bundles from the buffer and issues a stall if an instruction word needed
for the next instruction bundle is missing. A branch instruction sets the fetch
counter that points to the next four instruction words that should be fetched
to the branch target and sets the executed bits associated with all slots.

4 Simulator Details

Emulation at the statement level is slow. We therefore treat basic blocks as
single units for emulation purposes. As far as we are aware, we are the first
to perform functional and accounting simulation for basic blocks and loops.
Fallback to an interpreter, which we call interpreted emulation, is used to

support breakpoints placed at single instructions, to support single stepping
through the code, and to handle some indirect branch instructions.

The requirements of our emulator were:

the fastest possible execution,

cycle and state accurate emulation,

debugger support (single stepping, breakpoints),

convenient architecture specification,

portability (it should run on common 32 and 64 bit computers).

The performance and portability requirements require compiled emulation.
The assembly language source of the program to be emulated is translated
into an equivalent C program which emulates the whole functionality of the
simulated architecture. Despite difficulties caused when emulating a pipelined
parallel architecture, basic blocks and loops are used as translation units. To
handle unpredictable computed jumps and to support debugging, a full inter-
preter is integrated with the compiled emulator. Control is passed back and
forth between the two components, the compiled emulator and the interpreted
emulator, as required. The interpreted emulator has a GUI which displays
assembler source, and which supports single-stepping and breakpoints.

For extending the architecture and for easy retargeting to other architectures,
the syntax and semantics of the instruction set are specified in a XML config-
uration file. In the following sections, we describe how various implementation
problems in the emulator are solved.

4.1 XML configuration file

Both the interpreter and the compiled emulator read their configurations from
an XML file. It describes the complete instruction set and the hardware con-
figuration for the register file, the pipeline, the instruction buffer, etc. It is
not only used for emulator generation, but also to generate the compiler,
documentation and parts of the hardware. The description of an instruction
includes the execution semantics and additional information used for auto-
mated translation to C, for documentation generation, and to describe calling
conventions. Figure 2 shows a slightly simplified and edited version of the
XML description of the 1d (Load) instruction. <timing> elements describe
the pipeline behaviour of an instruction, <code> elements contain fragments
of the semantics specification of an instruction. The instruction reads the value
of an address register at the beginning of stage EX1, adds 2 to the register at
the end of EX1, uses the old value as the address for a memory read at the
beginning of stage EX2 and stores the read value into another register at the
end of the stage.

<instruction> <map key="READ_0P1">

<mnemonic>1d</mnemonic> <timing>EX1,begin</timing>
<operands> <code>tmpl = %opl</code>
<operand>ADDR_REG</operand> <code>tmp2 = %opl + 2</code>
<operand>LX_DX_RX_REG</operand> </map>

</operands> <map key="MOD_OP1">
<syntax>(opl)+, op2</syntax>

<timing>EX1,end</timing>
<code>%opl = tmp2</code>
</map>

<map key="MEM_READ">

<semantics>
<execute>READ_0OP1</execute>
<execute>MOD_0P1</execute>

<execute>MEM_READ</execute> - . o
<execute>WRITE_0P2</execute> <timing>EX2,begin</timing>
</semantics> <code>tmp3 = mem[tmpl]</code>

</instruction> </map>
<map key="WRITE_OP2">
<timing>EX2,end</timing>
<code>%,0p2 = tmp3</code>
</map>

Fig. 2. 14 instruction with timings in the XML file

The identifiers within the <execute> elements reference other places in the
XML file (shown in Figure 2), where the timings and the code that has to be
generated for such an instruction part are stored. This separation of concerns
facilitates maintenance. Since many instructions share common parts, changes
can be made at a single place.

The <operands> and <syntax> elements shown in Figure 2 are used for the
assembler front-end. After an assembler line is split into simple tokens, checks
are made as to whether the syntax and the types of the operands match the
information found here.

4.2 Dividing the instruction bundles into basic blocks

The instruction bundles are traversed to find all basic block headers. A header
is an instruction bundle which meets one or more of the following requirements:

(1) it is a target of a branch instruction,
(2) it starts the body of a hardware loop, or
(3) it follows a branch instruction or the end of a hardware loop body.

For those branch instructions that have a branch delay, the instructions in the
branch delay slots are appended to the branch instruction’s basic block. If an
additional branch is executed in a branch delay slot, only the first instruction
of the target basic block is executed. In this case, a duplicate basic block which
contains only the first instruction is generated. Each of these basic blocks is

translated into a single C function in the generated output. This keeps the
functions small, resulting in short compilation times and good optimization
by the C compiler.

4.3 Generating code for instructions

Consider an actual instruction with real operands, such as 1d (r0)+, 10. The
placeholders for the operands that were shown in Figure 2 are simply filled
with the actual operands. Figure 3 depicts the code generated for this instruc-
tion. The identifiers starting with tmp in the table are temporary variables
used to cache register values or computed values. The C compiler should opti-
mize unnecessary copies away. These temporaries also solve interdependencies
between different pipeline stages of overlapping instructions in an elegant way:.

A unique number is appended to the temporary names to avoid clashes with
other instructions. With long basic blocks this can create a lot of variables but
they all have a very short live range, at most from the start of an instruction
to its end.

The generator iterates over the phases (for the xDSPcore this is begin and
end) of each cycle and copies the code pieces that are executed in that phase
into the function. The code order within a phase does not matter. For exam-
ple, the code of the instructions in bundle n with timing EX2/begin will be
scheduled concurrently with those in bundle n 41 and the timing EX1/begin.
Immediately after that, the code for EX2/end of bundle n and EX1/end of
bundle n + 1 will be generated.

Many arithmetic instructions can be implemented by a single C operator.
Other instructions such as multiply-accumulate, bit insertion or saturated
computations do not have direct C counterparts. They are implemented by
groups of operations or small inline functions which are read from the XML
file.

EX1 | begin | tmpl

r0

tmp2 = r0 + 2

end | r0 = tmp2

EX2 | begin | tmp3

mem [tmp1]

end 10 = tmp3

Fig. 3. Code for 1d (r0)+, 10

4.4 Control flow

Each generated C function returns the number of the next basic block to
be be executed. This number is used as an index into an array of function
pointers to locate the next basic block’s function. This enables a breakpoint
to be set just by overwriting an entry in the array with a pointer to a special
breakpoint function. The compiled emulator’s main loop has the following
simple structure:

int bbnr = <number of starting block>;
while ((bbnr = bbptr[bbnr]()) >= 0)

I

A software stack simulates the hardware stack for subroutine calls. At a call,
the number of the basic block following the call instruction is pushed onto the
stack, the called function number is returned and is thus executed next. A
return instruction pops a function number from the stack and returns it.

4.5 Instructions crossing basic block boundaries

Consider the assembler code show in Figure 4. Because the EX2 stage of the
1d instruction is executed at the same time as movr’s EX1 stage and because
register 10 is written at the end of a cycle, register 11 receives 10’s old value.
Therefore executing the whole 1d instruction at the end of the basic block
which contains the br instruction would give wrong results. To resolve these
conflicts, the code fragments of 1d’s EX2 stage are moved into the basic block
that begins with the label foo: and will be executed there in the correct
order. The decision whether those moved code parts need to be executed is
determined by a global variable that remembers the last executed basic block.
Temporary variables which hold information which is needed across basic block
boundaries, and therefore across a function boundary in the generated C code,
are replaced by global variables which resemble pipeline buffers.

br foo

nop

1d (r0)+, 10
foo:

movr 10, 11

Fig. 4. Overlapping between 1d and movr

Basic blocks can be duplicated to improve performance. For every predecessor
P; of basic block B which has leftover pipeline stages, a specialized version

B; of basic block B is generated. It includes the code for the leftover pipeline
stages. A global emulator switch determines the code generation scheme. In
the previous example (Figure 4), the basic block is duplicated (see Figure
5). Only one of them executes the second part of 1d. The xDSPcore has few
multicycle instructions. Therefore, code seldom needs to be duplicated.

SN -

B B, B,

P, Py

Fig. 5. Duplicating basic blocks

4.6 Switching between the interpreted and compiled emulators

Some situations cannot be handled by a compiled emulator. A particular in-
stance of such a situation occurs with a branch to an address computed at
run-time. It may turn out that the target of the branch was not known to be
a possible target when the source program was translated to C. Thus there
would be no C function which can be called to continue emulation at the tar-
get instruction. The only practical solution requires subsequent emulation of
the program by the interpreted emulator.

The implementation of an indirect branch proceeds as follows. First, the tar-
get address is computed. Then a hash table is searched to attempt to locate
the basic block corresponding to that target address. If it is found, the com-
piled emulator retains control, using its main loop to invoke the C function
corresponding to the basic block. If it is not found, the target address is not
the beginning of a basic block or there are leftover pipeline stages which are
not handled in the target basic block. (This latter case happens when the
basic block containing the indirect branch was not recognized as a possible
predecessor of the target basic block when the program was translated to C.)
In all cases where the target address is not found in the hash table, control
is transferred to the interpreter. The interpreter executes instructions one by
one, returning control to the compiled emulator at the earliest opportunity,
which would normally occur at the end of the basic block.

The biggest difficulty lies in transferring the complete pipeline state, which
is buried in the compiled code, to the interpreter. Fortunately the tempo-
rary variables can be used to solve this issue. If execution is passed to the
interpreter at the end of a basic block, all the information needed to fill its
internal data structures for each execution unit’s pipeline is represented by
the values of the temporaries that are currently “live” and which are stored in
the global variables which correspond to pipeline buffers. Taking the example
from Figure 3, if the switch to the interpreter is done after 1d’s EX1 stage,

the interpreted emulator should access the temporary variable tmpl because
it will be needed for the memory access in the next cycle.

The other direction, where control is passed back to the compiled emulator,
is handled similarly. Such a switch of emulation mode can only happen at
a basic block boundary. The interpreter copies pipeline information into the
global temporary variables which correspond to the pipeline buffers. Finally
the hash table is searched for the number of the basic block which matches the
program counter value. The compiled emulator is resumed in its main loop,
where it calls the C function for the basic block.

Setting a breakpoint and single stepping through the program are both sup-
ported by the interpreted emulator. When a breakpoint is set inside a basic
block B, the function pointer for B in the basic block array is replaced by a
pointer to the breakpoint function. Thus, when the compiled emulator next at-
tempts to execute that basic block, control is passed to the breakpoint function
instead. The breakpoint function accesses a global table which records infor-
mation about each basic block. The table includes the address of the start of
each basic block and the basic block counters (see section 4.10). The break-
point function uses the information to restore the program counter and the
pipeline state, it increments the basic block counter and continues execution
in the interpreted emulator. At the end of the basic block, and assuming that
single stepping is no longer being performed, control returns to the compiling
emulator.

4.7 Simulating the Instruction Buffer

The addresses of the currently cached fetch bundles are stored in an array, as
are the executed bits. At the beginning of each bundle, an attempt is made to
insert the next fetch bundle’s address into the array. A second table is used for
a reverse-lookup because simulating the fully associative lookup would require
up to eight comparisons per check. This second table associates each possible
fetch bundle address with an index into the address array. Figure 6 illustrates
these data structures.

All instruction words between the program counter and the fetch counter
are always held in the instruction buffer. Thus if one knows that the fetch
counter is ahead of the instruction pointer by a sufficient amount, the check
whether the instruction words needed for the execution of the next bundle are
available can be omitted. To determine statically whether the check can be
omitted, the following strategy is applied. The program counter is initially set
to the address of the first instruction bundle and the fetch counter is set to the
address of the first fetch bundle. Program flow is simulated by adding four to

10

Instruction memory

Instruction buffer 0x0000

_— Instruction counter

W

=~ Fetch counter

Oxfffc

Executed bit

Fig. 6. Simulated Instruction Buffer

the fetch counter and the amount of memory used by the instruction bundle
to the program counter at every step. If the fetch counter does not exceed the
program counter, there is no guarantee that the bundle is in the buffer. In this
case, extra code is generated which performs a look-up for the needed address
in the instruction buffer and simulates a stall if it could not be found.

As already stated, executing a branch instruction sets the fetch counter and
all executed bits. Code to simulate these actions is executed at the start of the
destination basic block. When that destination block can be reached by both
branching and by sequential execution, two versions of the block are compiled
— one with, and one without, the extra code to set the fetch counter and the
executed bits. Finally code to set the executed bit in the instruction buffer is
inserted after all instruction words of a fetch bundle are executed.

Simulating the instruction buffer is expensive. Techniques to decrease the costs
by computing extensive lookup tables at compile time are being explored.

4.8 Hardware loops

The loop instruction is simulated by pushing a function pointer to the loop
body’s first basic block and the iteration count onto a stack. At the end of the
loop, the counter is decremented; if it reaches zero, the following basic block
gets executed, otherwise execution continues with the beginning of the loop
body as found on the stack.

If a hardware loop consists of a single basic block, the emulator optimizes the
loop into a C for(;;) statement. Thus the overhead incurred by a function
call on each iteration is eliminated, and the C compiler is able to apply further
optimizations.

11

If a hardware loop is sufficiently small to fit into the instruction buffer, a
different optimization can be performed. The loop body is unrolled three times;
the first copy simulates the buffer as described in the previous section for
the first iteration, the second one repeats the body n — 2 times. Since the
instruction words are already buffered, the fetch simulation can be completely
omitted. Finally, the third copy of the body simulates the last iteration of the
loop.

In a future version of the emulator, we plan to add simple loop analysis and
to treat loops, which contain multiple basic blocks that fit into the instruction
buffer, similarly to hardware loops.

4.9 Memory stalls

The xDSPcore has two memory ports, the X port covering the lower half of the
data memory and the Y port covering the upper half. Two memory accesses
are possible in a single cycle only if they do not use the same port, otherwise
a pipeline stall occurs and the second access is deferred to the next cycle.

If two memory accesses are detected in a bundle, code to test whether the two
memory addresses use the same port has to be inserted. If tmpl and tmp?2 are
temporary variables holding the values of two address registers that are used
to access memory, then the code to check if a stall occurs is similar to this:

if (! ((tmpl ~ tmp2) >> 15)) {
... /*x issue a stall */

}

4.10 Collected statistics

Each basic block has an associated counter which has to be incremented at
runtime when entered. The interpreted emulator has additional counters for
instructions of partially executed basic blocks when the target of an indirect
branch is inside a basic block. Using these counters, the dynamic number of
executed instructions, bundles, the average number of instructions in a bundle,
the frequency of each instruction, etc., can easily be computed. The number
of memory stalls and aligner stalls are also counted. In addition, the emulator
maintains extra counters for .PROFILE pseudo-instructions that are generated
by the C compiler. They are used for feedback-driven optimization.

12

5 Experimental Results

Six sample programs, which represent typical applications for the xDSPcore
processor, were used in our experiments. They are: blowfish (symmetric block
ciphering), dct8x8/dct32 (discrete cosine transformations), g721 (voice com-
pression), serpent (cryptograhic algorithm) and viterbi (Viterbi decoder). The
sizes of these programs and other characteristics are listed in Table 1. The dy-
namic parallelism column shows the average number of instructions executed
in each cycle. The parallelism and the dynamic average basic block length
have a significant effect on how efficiently the program can be emulated.

Source size | Object size p]z::g;ila; rlrll;fn Ab‘{iiglc; rlfgatskilc
blowfish | 25.8 kB 32 kB 1.91 14.38
dct8x8 43.9 kB 7 kB 1.85 7.48
dct32 35.8 kB 34 kB 2.14 8.73
g721 28.5 kB 5 kB 1.29 6.57
serpent 144.1 kB 46 kB 1.68 8.31
viterbi 36.6 kB 23 kB 1.21 216.85
Table 1

Characteristics of Test Programs

The left part of table 2 shows the speed of the six programs on a simple inter-
preter. Because statistics gathering has such a large effect on emulation speed,
the speed is shown with statistics gathering both enabled and disabled. The
right part of table 2 shows the execution speed of each of the programs when
emulated with Compiled Emulation. A comparison between the two columns
shows the cost of emulating the instruction buffer of the xDSPcore archi-
tecture. However it is necessary for guaranteeing cycle-accurate performance
statistics. Statistics gathering has negligible effect on timings for the compiled
emulation. Therefore, separate timing data to show its effect on emulation
speed in the compiled case is not included in the table.

The effective speed-up through using the compiled technique versus inter-
pretation can be estimated from the data in Table 2. The numbers in the
interpreted emulation column where statistics are enabled can be compared
with those in the compiled emulation column where the instruction buffer is
simulated. The speed-up factors range from 1000 to 3000. It can be seen that
the largest speed-ups occur for the programs which have the longest basic
blocks.

Finally, Table 3 shows the resources needed to generate and compile the em-

13

interpreted emulation || compiled emulation
statistics enabled? Yes No Yes
instr. buffer simulated? Yes Yes No
blowfish .083 MHz | .207 MHz || 165 MHz | 302 MHz
dct8x8 .082 MHz | .205 MHz || 95 MHz | 190 MHz
dct32 .071 MHz | .187 MHz || 105 MHz | 204 MHz
g721 .078 MHz | .198 MHz || 78 MHz | 259 MHz
serpent .040 MHz | .208 MHz || 120 MHz | 258 MHz
viterbi .094 MHz | .214 MHz || 181 MHz | 566 MHz

Table 2

Emulation Speeds with an Interpreter and Compiler

ulated programs. Although the compiled programs are much larger than the
original programs on the xDSPcore platform, it should be remembered that
they are executed on a much more powerful computer where memory is not
a limitation. All measurements were made on an AMD Opteron 2Ghz CPU.
The C code was translated by the Intel compiler with the -03 optimization

level.
Generation Compile C code Binary
time (secs) time (secs) size (kB) size (kB)
blowfish 3.22 3.06 316 257
dct8x8 3.32 4.51 421 396
dct32 3.27 5.13 780 542
g721 4.97 7.47 454 404
serpent 9.41 24.36 2081 1518
viterbi 3.50 60.85 475 411
Table 3

Resources Needed to Create the Compiled Simulation

6 Conclusion

We have presented a novel approach for retargetable emulation of an architec-
ture with some challenging features which include pipelining, a VLIW design,
banked memory and an instruction cache. By generating C code which rep-
resents a translation of the original program at the basic block level, and
which embodies the particular features of the emulated architecture, we have

14

achieved impressive performance results. To our knowledge, we are the first
to exploit partial evaluation of emulated features and extensive code duplica-
tion of the emulated program. The emulation speed is up to 3000 times faster
than an interpreter while still maintaining a faithful simulation of the original
architecture down to the number of clock cycles consumed.

References

T. Austin, E. Larson, D. Ernst, SimpleScalar: An infrastructure for computer
system modeling, Computer 35 (2) (2002) 59-67.

E. Schnarr, J. Larus, Fast out-of-order processor simulation using memoization,
in: Proceedings of the 8th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS VIII), ACM
SIGPLAN, ACM, 1998, pp. 283-294.

A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, A. Hoffmann, A
universal technique for fast and flexible instruction-set architecture simulation,

in: Proceedings of the 39th Conference on Design Automation, ACM Press,
2002, pp. 22-27.

C. May, Mimic: a fast system/370 simulator, in: Papers of the Symposium on
Interpreters and Interpretive Techniques, ACM Press, 1987, pp. 1-13.

R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, S. G. Robinson, Binary
translation, Communications of the ACM 36 (2) (1993) 69-81.

J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, A. Klaiber,
J. Mattson, The transmeta code morphing software: Using speculation, recovery,
and adaptive retranslation to address real-life challenges, in: Proceedings of the
International Symposium on Code Generation and Optimization (CGO '03),
2003, pp. 15-24.

B. Cmelik, D. Keppel, Shade: A fast instruction-set simulator for execution
profiling, ACM SIGMETRICS Performance Evaluation Review 22 (1) (1994)
128-137, special Issue on Proceedings of the 1994 Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS ’94; 1620 May 1994;
Vanderbilt University, Nashville, TN, USA).

E. Witchel, M. Rosenblum, Embra: Fast and flexible machine simulation,
in: Proceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, Vol. 24,1 of ACM
SIGMETRICS Performance Evaluation Review, ACM Press, New York, 1996,
pp. 68-79.

M. Probst, Dynamic binary translation, in: UKUUG Linux Developer’s
Conference, 2002.

15

[10] C. Mills, S. C. Ahalt, J. Fowler, Compiled instruction set simulation, Software
— Practice and Experience 21 (8) (1991) 877-889.

[11] R. Amicel, F. Bodin, A new system for high-performance cycle-accurate
compiled simulation, in: 5th International Workshop on Software and Compilers
for Embedded Systems, 2001.

[12] S. Pees, A. Hoffmann, H. Meyr, Retargetable compiled simulation of embedded
processors using a machine description language, ACM Transactions on Design
Automation of Electronic Systems. 5 (4) (2000) 815-834.

[13] J. Schnerr, G. Haug, W. Rosenstiel, Instruction set emulation for rapid
prototyping of SoCs, in: Proceedings of Design, Automation and Test in Europe
(DATE ’03), IEEE Computer Society, 2003, pp. 562-567.

[14] N. Bermudo, N. Horspool, A. Krall, Control flow graph reconstruction for
reverse compilation of assembly langauge programs with delayed instructions,
in: J. Krinke, G. Antoniol (Eds.), Fifth International Workshop on Source Code
Analysis and Manipulation (SCAM’05), IEEE, Budapest, 2005, pp. 107-116.

[15] A. Krall, U. Hirnschrott, C. Panis, I. Pryanishnikov, xDSPcore: A Compiler-
Based Configurable Digital Signal Processor, IEEE Micro 24 (4) (2004) 67-78.

16

