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Abstract. A type inclusion test is a procedure to decide whether two

types are related by a given subtyping relationship. An e�cient imple-

mentation of the type inclusion test plays an important role in the per-

formance of object oriented programming languages with multiple sub-

typing like C++, Ei�el or Java. There are well-known methods for per-

forming fast constant time type inclusion tests that use a hierarchical bit

vector encoding of the partial ordered set representing the type hierarchy.

The number of instructions required by the type inclusion test is pro-

portional to the length of those bit vectors. We present a new algorithm

based on graph coloring which computes a near optimal hierarchical en-

coding of type hierarchies. The new algorithm improves signi�cantly on

previous results { it is faster, simpler and generates smaller bit vectors.

1 Introduction

Checking the type of a value is a common operation in typed programming lan-
guages. In many cases this requires little more than a comparison. But, modern
languages { those which allow types to be extended { complicate matters slightly.
Type tests must check for inclusion of types, that is, whether a given type is an
extension (or a subtype) of another type. The subtyping relation, a partial order
on types, written <:, is the transitive and re
exive closure of the direct subtype
relation <:d. The common practice for object-oriented programming languages
is to derive <:d directly from the inheritance structure of a program. Thus, each
class A de�nes a type A, and A is a subtype of B either if A = B, or if A inherits
from B.

Type inclusion tests can occur so frequently in programs, particularly object-
oriented programs, as to put a strain on the overall system performance. It is
important to have type inclusion testing techniques which are both fast and
constant-time. However, these techniques should also be economical in space.



The techniques developed in this paper are based on a scheme called hierar-

chical encoding. This scheme represents each type as a set of natural numbers.
The sets must be chosen so that either

x <: y , 
(x) � 
(y) (top down encoding)

or

x <: y , 
(x) � 
(y) (bottom up encoding)

where 
(x) maps type x to its set representation. Thus, the set used for a subtype
has to be a superset of the set representing its parent. The sets have a natural
representation as bit vectors. An example for a small hierarchy is shown in
�gure 1 (top down encoding) and �gure 2 (bottom up encoding). In the bit vector
representation the test function for hierarchical top down encoding becomes

x <: y , 
(x) _ 
(y) = 
(x)

or alternatively

x <: y , 
(x) ^ 
(y) = 
(y)

which would be implemented in C code as

if ((type->code & parenttype->code) == parenttype->code)

/* it is a subtype */
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Fig. 1. Hierarchical encoding (top down)

The following sections brie
y discuss previous work on type inclusion tests.
Subsequently, we describe our new method which uses graph coloring techniques
to �nd nearly optimal set representations for types in a multiple inheritance
hierarchy. Finally, we present experimental results which show that our new
method is signi�cantly better than the main competing method on three counts.
It generates signi�cantly shorter bit vectors, it computes the vectors faster, and
it requires less working storage.
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Fig. 2. Hierarchical encoding (bottom up)

2 Previous work

One `obvious' algorithm for implementing the type inclusion test is that de-
scribed by Wirth[Wir88]. To test if x <: y, the algorithm proceeds up the inheri-
tance hierarchy starting from x to see if y is an ancestor. However, the algorithm
does not run in constant time, which is a problem if the hierarchy becomes large,
and the basic algorithm works only for single inheritance hierarchies. Generaliz-
ing the method to work with multiple inheritance, either by using backtracking
or by constructing sets of parents, makes it slower still.

Another `obvious' algorithm, and one which achieves a fast constant time
test, is to use a precomputed matrix that records all possible relationships. An
element M[x,y] in the binary matrix holds a 1 if x <: y and 0 otherwise. Although
this implementation is used by some O-O languages, it has the drawback that
the matrix can be very large. If there are 2000 types, the matrix will consume
nearly 500 KB. (There are a number of schemes for compacting the matrix at
the expense of making a look-up in the matrix much slower [DDH84].)

Cohen showed how the type inclusion test can be implemented in constant
time using the concept of displays to precompute paths through the inheritance
hierarchy[Coh91]. However, Cohen's method uses more memory than Wirth's
and, in its original form, is applicable only to single inheritance hierarchies.

Caseau took a di�erent path based on hierarchical top down encoding. He
was inspired by a method originally developed for fast implementation of lattice
operations [ABLN89] based on hierarchical bottom up encoding and adapted it
to the type inclusion problem[Cas93]. Caseau's scheme computes a bit vector for
each type. The bit vector represents a set of genes, where a gene is represented
by a natural number. Each type that has only one parent in the hierarchy has
an associated gene. A type with multiple parents has no associated gene. The
bit vector for a type T is computed as the set of all genes associated with itself
and with all ancestors of T . Testing if x <: y is implemented as a test to see
if the set of genes for type x is a superset of the set for y. Caseau's method
requires that the type hierarchy be a lattice. This requirement may force extra
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nodes to be added to the hierarchy. Caseau gave an incremental algorithm for
maintaining the lattice property and gave a backtracking technique for �nding
sets of genes and for updating previously computed sets of genes as the hierarchy
is constructed in a top-down manner.

Problems with implementing Caseau's algorithm inspired us to develop our
own method for �nding sets of genes. We encountered situations where the
Caseau algorithm produces incorrect results. Such an example is shown in �gure
3. Even if we assume that the error can be corrected, Caseau's method for main-
taining the lattice property may force the addition of an exponential number
of additional nodes (and therefore also require exponential running time). The
worst case is unlikely to occur in practice, but this is nevertheless undesirable
behavior. We also discovered that the number of distinct genes used by Caseau's
algorithm may be considerably more, sometimes by a factor of 4, than the opti-
mal number. Since the number of genes determines the sizes of the bit vectors
(and therefore determines the running time of the set inclusion test too), it is
important to minimize the number.
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Fig. 3. An incorrect encoding produced by Caseau's algorithm

Habib and Nourine showed that constructing an optimal bit vector encod-
ing for partially ordered sets is NP-hard [HN94]. They also showed in [HN94]
and [HN96] that there exist some classes of lattices (distributive and simplicial
lattices) where, for an optimal solution, all genes have to be di�erent. For these
classes of lattices, therefore, an optimal solution can be constructed in linear
time. Partially ordered sets resulting from type hierarchies tend to be very dif-
ferent from distributive lattices, so their encodings are correspondingly an order
of magnitude more compact.

3 Near optimal hierarchical encoding

Our near optimal hierarchical encoding algorithm is similar to Caseau's because
it also relies on a top down encoding. But, unlike Caseau's algorithm, our algo-

4



rithm does not require the hierarchy to have a lattice structure { it can encode
any partially ordered set. We rely on balancing the height of the hierarchy and
use graph coloring to �nd a near optimal solution. The algorithm was designed
for fast execution (it has worst case quadratic run time complexity) for inte-
gration into compilers for object oriented programming languages with multiple
inheritance or multiple subtyping. Instead of performing a full and slow search
for optimal encodings, we have used simple heuristics to �nd a near optimal
solution in a matter of seconds.

3.1 The basic algorithm

To make hierarchical encoding of partially ordered sets practical, we must avoid
any restriction to lattice structures and thereby avoid the exponential behavior
of lattice completion. We can easily eliminate such a restriction if we associate
a gene (i.e. a distinguishing bit) with all nodes in the hierarchy. In contrast,
Caseau's method associates a gene only with nodes that have a single parent.
However, a better solution is to determine which nodes actually need a gene.

To �nd a correct hierarchical top down encoding, the following equation must
be ful�lled in both directions:

x <: y , 
(x) � 
(y)

If a type with only one parent gets a gene and every type inherits all the genes
of its super types, the left to right direction of the equation is ful�lled. The
opposite direction is more di�cult to achieve if the hierarchy is not a lattice.
Consider the example hierarchy of �gure 4. Types e and f both have more than
one direct super type. Type e needs its own gene (4), otherwise its encoding
would be included in the encoding of f { which wrongly would state that f is a
subtype of e.

�

��

�

��

�

��

�

��

�

��

�

��

e f

b c d

a

f1,2,4g f1,2,3g

f1g f3gf2g

fg

�
��
@
@@

�
��

�
��

@
@@

Fig. 4. Multiple inheritance type (e) needs a gene (4)

The solution to the problem is to give all types with multiple super types a gene
if they would violate the above equation. So our algorithm just checks the above
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equation to determine which types require a gene. For the purpose of describing
our algorithm, we �rst give some de�nitions:

parents(x) // all nodes which are a direct supertype of x
children(x) // all nodes which are a direct subtype of x
ancestors(x) // all nodes which are a supertype of x
descendants(x) // all nodes which are a subtype of x
singles // all nodes in the hierarchy with a single parent
multis // all nodes with more than one parent
needgenes // all nodes which need a gene

All nodes m 2 singles need a gene and needgenes becomes singles. All
nodes m 2 multis for which 9n 2 multis and not n <: m need a gene (and are
added to needgenes) if

ancestors(m) \ needgenes � ancestors(n):

For a correct hierarchical encoding it is not necessary for the genes to be
distinct. Two genes can be the same if other genes ensure di�erent encodings.
For an example just take a hierarchy with two chains. The genes in one chain
can be the same as in the other chain. Only the topmost node in each chain
must be di�erent to ensure correct encoding. In the hierarchy in �gure 1, the
genes of d and f can be the same. The di�erent genes for b and c ensure a correct
encoding.

Our algorithm determines which nodes cannot use the same genes. For each
node, the set of con
icting nodes is determined and a con
ict graph is con-
structed. An edge in the con
ict graph means that two nodes are not allowed to
use the same gene.

The con
ict graph is constructed as follows:

{ Every node con
icts with all descendants of its parents.
{ In addition, a node N con
icts with all ancestors of any descendants of N 's
parents if these descendants are not descendants of N .

A correctness proof for the con
icting genes can be found in [Cas93]. It has
to be modi�ed slightly, since Caseau missed some cases for the second class of
con
icts. The following pseudocode gives a more formal description of con
ict
graph computation.

for each x 2 hierarchy do

parx := parents(x)
if parx = fg then parx := fxg

for each y 2 descendants(p); y 6= x;8p 2 parx do

enter con
ict between x and y in con
ict graph
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if y 2 multis;:(y <: x) then
8anc 2 ancestors(y); anc 6= y, enter con
ict between

x and anc in con
ict graph

After the con
ict graph has been constructed, graph coloring is used to �nd
a solution to the gene assignment problem. The hierarchical code for a node is
then computed as the union of the genes for all its ancestors and for itself.

A better, near optimal, solution can be found if sets of children are subdivided
and the hierarchy is balanced before the con
ict sets are computed. The next two
subsections describe both coloring and balancing in some detail. The main steps
of the encoding algorithm are as follows (complete pseudocode can be found in
the appendix).

mark all nodes in hierarchy which need a gene

split children lists and balance the hierarchy

compute con
ict graph

color the con
ict graph

compute code

3.2 Coloring the con
ict graph

Computing the chromatic number of a graph (determining the minimal number
of colors needed to color vertices of the graph) is a NP-complete problem. There
exist backtracking algorithms which can compute the chromatic number for very
small graphs (up to 100 vertices), there are probabilistic algorithms with almost
polynomial run time [EL89] and there are genetic, tabu and hybrid algorithms
for graph coloring [FF95]. But all these algorithms are unusable for the large
con
ict graphs which we must construct for type hierarchies. The graphs may
have 2000 vertices and 200000 edges (see table 6).

There is, however, a class of very fast heuristic algorithms which give good
results on most graphs and are used, for example, in graph coloring register
allocators [BCKT93]. These sequential vertex coloring algorithms [MMI72] have
a run time which is linear in the number of vertices plus the number of edges in
the con
ict graph [MB83]. All these algorithms order the vertices according to
some predetermined criteria and color the vertices in this order. If no color, out
of those used so far, can be reused for the current vertex, the number of colors
is increased by one and the vertex is assigned the new color. Otherwise, one of
the existing colors, one which does not cause a con
ict for the current vertex, is
selected.

[MMI72] presents two algorithms which give the best results: largest degree
�rst ordering and smallest degree last ordering. Largest degree �rst ordering sorts
the vertices by the vertex degree (number of edges from the vertex) and starts
coloring with the vertex with the largest degree. Smallest degree last ordering
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recursively removes the vertex with the smallest degree together with all its
edges from the graph and colors the vertices in reverse order of removal. Often
the smallest degree last algorithm gives the best results.

Another possibility is to construct a vertex order from the structure of the
hierarchy. The simplest order is generated by a top down, depth-�rst, traversal of
the hierarchy. A di�erent order is based on a topologically sorted order. Here, the
top down traversal is modi�ed so that it descends to a node N in the hierarchy
only if all parents of N have already been visited. This traversal visits the nodes
in an order similar to that assumed by Caseau in his algorithm. We will refer to
this order as the Caseau order. An evaluation of all these algorithms shows that
the smallest degree last algorithm gives the best results (see section 4 table 4).
For many hierarchies, this algorithm �nds an optimal result.

There are di�erent strategies for choosing which color to reuse for the current
vertex. If the colors are numbered in order of �rst use, two simple strategies are
to use the color with (1) the smallest number or (2) the largest number. Another
strategy is to choose the most heavily used color which does not cause a con
ict.
Table 5 in section 4 shows some results using these strategies. The strategy that
selects the most used color weighted by the degree of the node often gave the
best results in our experiments. Since there is no consistent winner, a mixed
strategy which tries more than one method and then picks the best result might
be appropriate.

In [MB83], an improvement to sequential vertex coloring is presented. If
there is no unused color available, an color exchange is tried. First all con
icting
colors are collected which con
ict only once with the vertex to color. Then
there is a search for a vertex which is not in con
ict with one of these collected
vertices and the new vertex. If such a vertex can be found, the colors can be
exchanged and the new vertex can be colored. Unfortunately, we found that this
color exchange strategy fails with the con
ict graphs constructed for our type
hierarchies. Our graphs tend to have so many edges that there are no nodes
which can be exchanged. We assume the reason is that nodes near the top of the
hierarchy con
ict with nearly all nodes.

3.3 Splitting and balancing the hierarchy

Caseau noted in [Cas93] that the number of bits needed for hierarchical encoding
is greatly in
uenced by the number of children at a node. If a node has k children,
then k distinct genes are immediately needed to distinguish these children. To
reduce this number when k is large, we can either use more than one gene to
distinguish the di�erent children or we can split the children into smaller groups
by adding additional nodes to the hierarchy. Using more bits to identify a type
complicates the algorithm and makes it di�cult to �nd a near optimal solution.
Therefore, whenever a node had more than 8 children, Caseau split them into
two groups and introduced two additional nodes as parents for those groups.
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Repeatedly applying this technique reduces the total number of genes needed,
but it far from being an optimal strategy.

We also use the idea of splitting children into groups but we attempt to
balance the hierarchy when inserting new nodes. A lower bound on the number
of genes needed for hierarchical encoding may be constructed as maximum over
all weighted path lengths from the root node to a leaf node. The path length for
a leaf node is X

jchildren(N)j

where children(N) is the set of child nodes for node N , and the sum is made
over all nodes N on the longest path from the root node to the leaf node. Only
child nodes which need a gene are counted for the path length. For hierarchies
which are trees, the largest path length also provides the optimal solution. An
optimal solution for the hierarchical encoding of trees can be constructed by
splitting children lists and generating a balanced binary tree which minimizes
the path length. A bottom-up algorithm can be used to balance the tree. The
example in �gure 5 shows the number of genes needed being reduced from 5 to
4 by balancing.
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Fig. 5. Balancing a tree

An optimal balancing algorithm appears to be feasible only for tree-structured
hierarchies. With multiple subtyping, the hierarchy has to be balanced to gen-
erate the minimal chromatic number for its con
ict graph. Since computing the
minimal chromatic number is NP-complete, the balancing problem is very likely
to be NP-complete too. We therefore looked for a heuristic solution. In practice,
most multiple subtyping hierarchies deviate only slightly from a tree structure.
Heuristics based on the tree balancing method work satisfactorily when taking
into account the characteristics of multiple inheritance hierarchies.

If we are balancing a tree, splitting the children into two groups can be
performed arbitrarily. In the multiple subtyping case, children which share some
common descendants should be assigned to the same group. If we did not do
that, coloring is made harder because these common descendants would gain an
additional parent node.
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The splitting process is faster if it is performed in two stages. A `presplitting'
pass repeatedly performs a heuristic split into two groups and adds two parent
nodes until the groups are smaller than a certain limit (currently 14 nodes) using
precomputed path lengths. The second pass recomputes the path lengths after
every split and does a more complicated split inserting one or two nodes.

The presplitting pass computes an optimistic path length for every leaf node.
These optimistic path lengths are computed assuming fewer than three children
per node. It is assumed that the hierarchy can be balanced without introducing
nodes on the critical path. A leaf node's path length is propagated together with
an unique number to all ancestors of the leaf node. During the propagation, larger
path lengths overwrite smaller ones. Furthermore the set of all descendants of a
node are computed as a bit vector. Using these sets, children which are detected
to have overlapping descendant sets are placed in the same bucket. All children
lists are sorted according to three criteria. The primary criterion is by bucket,
the secondary criterion is by leaf nodes, and the third by the size of the path
length. Then every list of children which is longer than the limit is split into two
parts so that the lengths of both lists are smaller than the largest power of two
which is smaller than the original length of the list.

The second splitting pass precomputes the correct path length after every
split, and uses the sum of all children which need a gene on the path from the
root to a leaf. The leaf's path length is again propagated to all ancestors. Then
the ancestors of the leaf node with the largest path length are checked for a
children list to split. This splitting takes care that ancestors of the leaf node are
in the same list after splitting. The path lengths of the nodes are also taken into
account and, depending on the circumstances, either one or two new nodes are
inserted.

3.4 Space and time complexity

A careful implementation of the algorithm needs 19 milliseconds for the smallest
hierarchy and 2 seconds for the largest hierarchy when encoding the hierarchy
on an Alpha workstation with a 500MHz 21164a processor. The worst-case time
complexity of the algorithm is quadratic. The average complexity is lower and
depends on the number of edges in the con
ict graph. The marking part is
quadratic in the number of nodes that have more than one parent (i.e. the
size of multis). Each splitting step during balancing is linear in the number of
nodes, but since the number of nodes can be doubled this also implies quadratic
complexity. Coloring is linear in the sum of nodes and edges in the con
ict graph
[MB83]. The number of edges is limited by the number of nodes squared, but
usually is about twice as large as the average number of ancestors times the
number of nodes. Table 1 shows the proportion of the total run time spent on
each of the algorithm's subtasks (encoding the Geode hierarchy).

The space cost is dominated by the storage needed for the con
ict graph.
The graph is stored in two representations. One is a bit vector to provide a fast
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input marking splitting con
ict graph
management pre �nal graph coloring

6.6% 6.2% 3.1% 58.4% 21.3% 4.4%

Table 1. Execution pro�le of the encoding algorithm

check to see if a con
ict has already been entered in the graph. The second is a
list representation that allows fast sequential access to con
icting nodes. If space
is a concern, computation time can be traded for space. It is not necessary to
store the con
ict graph { it can be computed twice. Initially, only the degree
for each node is stored, and then the nodes are sorted according to decreasing
degree. Subsequently, the con
icts are computed for each node and immediately
colored. This increases the time, but reduces space requirements.

3.5 Incremental algorithm

The algorithm as presented above is not suited for incremental computation of
the encoding bit vector. But if slightly worse encodings are accepted, it can be
modi�ed for incremental computation. An incremental algorithm can only be
implemented in a top down manner where all super types of an added type have
to belong to the hierarchy already. The main di�culties are that the size of the
encoding could grow from one machine word to two (or from two words to three,
and so on), as well as the space consumption and execution time consumption
caused by a recomputation of the encoding, if the balancing or encoding changes.

The problem caused by increasing the number of machine words can be solved
by linking at run time with di�erent type checking subroutines which work for
one, two, three or more machine words.

The current algorithm stores the complete bit matrix for fast computation of
type inclusion tests. Additionally, ancestors sets and descendants sets are stored
for faster determination of which nodes need a gene and for faster balancing.
In an incremental algorithm, fast type inclusion can be performed using the
bit vector encodings. Also the test whether a type with more than one super
type needs its own gene can be performed using bit vector encodings instead of
ancestor sets. Balancing could be replaced by a simpler splitting process which
ignores the depth of the tree. Coloring could be carried out using an algorithm
similar to the one proposed by Caseau.

4 Results

This last section evaluates di�erent aspects of the algorithm and compares the
performance of the algorithm with other approaches. As test data, we used a
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collection of class libraries compiled by Karel Driesen. We also obtained the
Laure type hierarchy from Yves Caseau [Cas93] and the Java API library from
Sun [GYT96]. Table 2 presents the relevant characteristics of those libraries. The
number of classes varies from 225 to 1956, representing both big applications and
libraries. The depth of the hierarchy ranges from 7 to 18. The �rst four libraries
use single inheritance only; the others use multiple inheritance with up to 16
parents per class. Except for the three programs written in LOV (a language
similar to Ei�el), the average number of parents is close to one. For the three
LOV programs the average number of parents is close to two.

library name language classes depth max parents avg. parents

Visualworks2 Smalltalk-80 1956 15 1 1
digitalk3 Smalltalk-80 1357 14 1 1
NeXTStep Objective-C 311 8 1 1
ET++ C++ 371 9 1 1
Unidraw C++ 614 10 2 1.01
Self Self 1802 18 9 1.05
Geode LOV(Ei�el) 1319 14 16 1.89
Ed LOV(Ei�el) 434 11 7 1.66
LOV LOV(Ei�el) 436 10 10 1.71
Laure Laure 295 12 3 1.07
Java Java 225 7 3 1.04

Table 2. Hierarchy characteristics

Table 3 shows the main result, the number of bits needed for the encoding
using three di�erent splitting strategies combined with two di�erent coloring
strategies. The �rst two columns show the number of genes needed for encod-
ing the original hierarchy. The next two columns show the genes needed for a
hierarchy where all classes with more than 8 children have been replaced by a
class that has two new classes as children, each having one half of the children
of the original class. The last two columns show the results for a balanced hier-
archy using the balancing algorithm described in the previous section. The two
sequential coloring techniques use an ordering similar to that used by Caseau
(top down after all parents of a class have been colored) and the smallest de-
gree last ordering. Note that Caseau's algorithm cannot directly encode all our
hierarchies because it requires every hierarchy to be a lattice; we only color the
classes in a sequence which is similar to the ordering of his algorithm. To com-
pare Caseau's results with ours, it is necessary to compare the column Caseau

of max 8 children with the last column. Our algorithm can reduce the sizes of
the encodings to one quarter of those produced by Caseau's algorithm.

Table 4 gives the performance using six di�erent sequential coloring tech-
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original hierarchy max 8 children balanced hierarchy
smallest smallest smallest

benchmark Caseau last Caseau last Caseau last
Visualworks2 420 420 124 124 50 50
digitalk3 325 325 116 116 36 36
NeXTStep 177 177 92 92 23 23
ET++ 181 181 61 61 30 30
Unidraw 227 227 96 96 30 30
Self 297 297 180 180 55 53
Geode 404 403 231 228 110 95
Ed 128 126 90 80 62 54
LOV 130 127 92 86 68 57
Laure 34 33 34 33 23 23
Java 97 97 50 50 22 19

Table 3. Bit count of Caseau and near optimal coloring for di�erent balanced
hierarchies

niques. The �rst column (smallest �rst) is the worst ordering; it starts with the
class which has the smallest degree (the smallest number of con
icting classes).
Random ordering takes the classes in the order they are read in. Top down order-
ing traverses the hierarchy in a depth �rst manner from the root node down to
the leaf nodes. The Caseau ordering also traverses the hierarchy top down, but
it colors a class only after all parent classes have been colored. Largest degree
�rst and smallest degree last are the orderings suggested by Matula [MMI72]
and give the best results for our con
ict graphs. The lower bound column gives
an estimate for the lower bound using the largest path length as described in the
previous section. This estimate is quite accurate for tree-like hierarchies but is
only approximate for other hierarchies. In many cases, coloring needs the same
number of colors as estimated by the lower bound and this shows that an optimal
solution has been found. It is evident that con
ict graphs resulting from single
inheritance hierarchies can be colored optimally regardless of the algorithm used.

The quality of a sequential coloring algorithm not only depends on the or-
dering of the vertices but also on the color chosen if there is a choice of more
than one non-con
icting color to reuse. The last use coloring method sorts the
colors by their last uses and takes the �rst used color which does not con
ict.
The largest coloring method selects the color with the largest number while the
smallest coloring method selects the color with the smallest number. The best
color selection algorithms are based on an assumption that preferring a color
which is heavily used should produce fewer con
icts later on. The max use col-

oring method counts the number of uses of each color and takes the most used
one. The last two algorithms weight the use by the degree of the class. The max

sdl coloring method weights the use count by the removal degree obtained by
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smallest top largest smallest lower
benchmark �rst random down Caseau �rst last bound
Visualworks2 50 50 50 50 50 50 50
digitalk3 36 36 36 36 36 36 36
NeXTStep 23 23 23 23 23 23 23
ET++ 30 30 30 30 30 30 30
Unidraw 30 30 30 30 30 30 30
Self 60 57 56 55 53 53 47
Geode 140 122 120 110 99 95 42
Ed 84 72 68 62 57 54 30
LOV 86 73 79 68 59 57 31
Laure 24 25 23 23 23 23 23
Java 22 22 22 22 19 19 19

Table 4. Bit count of di�erent coloring techniques

the smallest degree last ordering, and the max ldf coloring method weights the
use count by the unmodi�ed degree. The smallest coloring method and the three
max use methods sometimes give di�erent best results. Because the computation
time for a coloring is small compared to the time needed to construct the con
ict
graph, it makes sense to try all four algorithms and take the best result.

last use largest smallest max use max sdl max ldf
benchmark color color color color color color
Visualworks2 50 50 50 50 50 50
digitalk3 36 36 36 36 36 36
NeXTStep 23 23 23 23 23 23
ET++ 30 30 30 30 30 30
Unidraw 30 30 30 30 30 30
Self 54 53 54 54 53 54
Geode 97 97 95 95 97 95
Ed 56 56 55 56 56 54
LOV 60 62 59 61 62 57
Laure 23 23 23 23 23 23
Java 19 19 19 19 19 19

Table 5. Bit count of di�erent color choosing techniques

Table 6 gives more data on the characteristics of the di�erent type hierarchies
with respect to the algorithm. It is evident that in most hierarchies the number
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of types which need their own gene is small compared to the number of types
with multiple super types. The only exceptions are the three LOV hierarchies,
where half the types need their own gene. The column balancing nodes shows also
that the most added balancing nodes were needed for the Geode hierarchy. The
number of con
ict edges increases if there is a higher use of multiple inheritance.
Computations of the encodings have been performed on an Alpha workstation
with a 500MHz 21164a processor. All computation times are in milliseconds.

type singles multis need balancing con
ict con
ict computaion
benchmark number gene nodes nodes edges time (ms)
Visualworks2 1965 1965 0 0 388 2353 62394 890
digitalk3 1357 1357 0 0 298 1655 37871 426
NeXTStep 311 311 0 0 103 414 6141 30
ET++ 371 371 0 0 94 465 7997 39
Unidraw 614 604 10 4 164 772 13541 93
Self 1802 1741 61 22 465 2228 113489 1367
Geode 1319 614 705 384 796 1794 149052 1902
Ed 434 272 162 68 198 538 26885 136
LOV 436 271 165 70 217 558 30428 168
Laure 295 275 20 0 29 304 4823 21
Java 225 216 9 1 63 280 3509 19

Table 6. Complexity data of hierarchies

We compared the size of the tables resulting from a bit matrix representation
of the transitive closure of the subtype relation with our encoding (table 7). The
size of the table can be reduced by a factor of up to 31 for the test hierarchies.
The size of the bit matrix encoding increases by n2 with the number of types. The
size of the bit vector encoding (for a hierarchy which is a balanced binary tree)
encreases by 2 �n logn. If the multiple inheritance portion is low, our algorithm
comes close to the logarithmic size increase.

5 Conclusion

We have presented a near optimal algorithm for �nding hierarchical encodings
for type hierarchies. Our algorithm produces encodings which are up to four
times shorter than encodings generated by a previous algorithm (Caseau) and
therefore provide a faster type inclusion check for object oriented languages with
multiple subtyping. The algorithm is also an order of magnitude faster than the
previous algorithm which makes it practical for use in compilers. To evaluate

15



size of size of reduction
benchmark bit matrix codes factor
Visualworks2 485.3 16.0 31
digitalk3 233.4 11.0 21
NeXTStep 12.4 1.2 10
ET++ 17.8 1.4 12
Unidraw 49.1 2.4 20
Self 410.8 14.7 28
Geode 221.5 15.9 14
Ed 24.3 3.4 7
LOV 24.4 3.4 7
Laure 11.8 1.1 10
Java 7.2 0.9 8

Table 7. Table sizes and reduction factor

our algorithm, the complete source code can be obtained via world wide web at
http://www.complang.tuwien.ac.at/andi/typecheck/.

References

[ABLN89] Hassan A��t-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. E�cient

implementation of lattice operations. ACM Transactions on Programming

Languages and Systems, 11(1):115{146, 1989.

[BCKT93] Preston Briggs, Keith Cooper, Ken Kennedy, and Linda Torczon. Color-

ing heuristics for register allocation. In ACM Conference on Programming

Language Design and Implementation, pages 275{284, Portland, June 1993.

ACM.

[Cas93] Yves Caseau. E�cient handling of multiple inheritance hierarchies. In

Conference on Object Oriented Programming Systems, Languages & Appli-

cations, pages 271{287, Washington, October 1993. ACM.

[Coh91] Norman H. Cohen. Type-extension type tests can be performed in con-

stant time. ACM Transactions on Programming Languages and Systems,

13(4):626{629, 1991.

[DDH84] Peter Dencker, Karl D�urre, and Johannes Heuft. Optimization of parser ta-

bles for portable compilers. ACM Transactions on Programming Languages

and Systems, 6(6):546{572, 1984.

[EL89] J. A. Ellis and P. M. Lepolesa. A Las Vegas graph coloring algorithm. The

Computer Journal, 32(5):474{476, 1989.

[FF95] Charles Fleurent and Jacques A. Ferland. Genetic and hybrid algorithms

for graph coloring. Annals of Operations Research, page to appear, 1995.

[GYT96] James Gosling, Frank Yellin, and The Java Team. The Java Application

Programming Interface. Addison-Weley, 1996.

[HN94] Michel Habib and Lhouari Nourine. Bit-vector encoding for partially or-

dered sets. In ORDAL'94, LNCS 831, pages 1{12. Springer, 1994.

16



[HN96] Michel Habib and Lhouari Nourine. Tree structure for distributive lattices

and its applications. Theoretical Computer Science, 165:391{405, 1996.

[MB83] David W. Matula and Leland L. Beck. Smallest-last ordering and clustering

and graph coloring algorithms. Journal of the ACM, 30(3):417{427, July

1983.

[MMI72] David W. Matula, George Marble, and Joel D. Isaacson. Graph coloring

algorithms. In R. C. Read, editor, Graph Theory and Computing, pages

109{122. Academic Press, 1972.

[Wir88] Niklaus Wirth. Type extensions. ACM Transactions on Programming Lan-

guages and Systems, 10(2):204{214, 1988.

Appendix: the encoding algorithm

// de�nitions
parents(x) // all nodes which are a direct supertype of x
children(x) // all nodes which are a direct subtype of x
ancestors(x) // all nodes which are a supertype of x
descendants(x) // all nodes which are a subtype of x
mark(x) // 
ag, is 1, if x need a distinguishing gene, 0 otherwise
length(x) // longest path length between x and a leaf node
leaf(x) // leaf node of the longest path which includes x
gene(x) // gene number, bit position in bit vector
code(x) // the bit vector of class x
singles // all nodes in the hierarchy with a single parent
multis // all nodes with more than one parent
needgenes // all nodes which need a gene

// mark all nodes of hierarchy which need a bit
mark(s) := 1 8s 2 singles

needgenes := singles

for each m 2 multis do

if 9n 2 multis;:(n <: m); ancestors(m) \ needgenes � ancestors(n)
then mark(m) := 1; needgenes := needgenes[ fmg

else mark(m) := 0

// balance the hierarchy
de�ne compute length(l 2 Integer, leaf 2 hierarchy; x 2 hierarchy) as

l := l+
P

mark(childx);8childx 2 children(x)
for each parentx 2 parents(x) do

if length(parentx) < l then

length(parentx) := l

leaf(parentx) := leaf

compute length(l; leaf; parentx)
length(x) := �1 8x 2 hierarchy
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for each leaf 2 hierarchy; children(leaf) = fg do

length(leaf) := 0
leaf(leaf) := leaf

compute length(0; leaf; leaf)
for each x 2 hierarchy; size(children(x)) > 2 do

split children(x) and add one or two nodes to hierarchy

if this is possible without increasing length(y) for any y 2 hierarchy

// compute con
ict graph
for each x 2 hierarchy do

parx := parents(x)
if parx = fg then parx := fxg

for each y 2 descendants(p); y 6= x;8p 2 parx do

enter con
ict between x and y in con
ict graph
if y 2 multis;:(y <: x) then

8anc 2 ancestors(y); anc 6= y, enter con
ict between
x and anc in con
ict graph

// color the con
ict graph
for each x 2 hierarchy in smallest degree last order do

if mark(x) = 1 then gene(x) := the most used non con
icting gene

// compute code
for each x 2 hierarchy do

code(x) := [gene(ancx);8ancx 2 ancestors(x)

This article was processed using the LATEX macro package with LLNCS style
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