
Faster Generalized LR Parsing

John Aycock and Nigel Horspool

Department of Computer Science,
University of Victoria,

Victoria, B. C., Canada V8W 3P6
faycock,nigelhg@csc.uvic.ca

Abstract. Tomita devised a method of generalized LR (GLR) parsing
to parse ambiguous grammars e�ciently. A GLR parser uses linear-time
LR parsing techniques as long as possible, falling back on more expensive
general techniques when necessary.

Much research has addressed speeding up LR parsers. However, we
argue that this previous work is not transferable to GLR parsers. Instead,
we speed up LR parsers by building larger pushdown automata, trading
space for time. A variant of the GLR algorithm then incorporates our
faster LR parsers.

Our timings show that our new method for GLR parsing can parse
highly ambiguous grammars signi�cantly faster than a standard GLR
parser.

1 Introduction

Generalized LR (GLR) parsing was developed by Tomita to parse natural lan-
guages e�ciently [21]. Tomita observed that grammars for natural languages
were mostly LR, with occasional ambiguities; the same can be said of C++
declaration syntax. Grammars for Graham-Glanville code generation are highly
ambiguous.

Not surprisingly, parsers which deal strictly with unambiguous grammars
can operate much faster than parsers for ambiguous grammars. This is crucial
when one considers that the speed of input recognition is often highly visible
to users. As a result, most arti�cial languages have unambiguous grammars by
design, and much research has targeted speeding up parsers for unambiguous
grammars. However, applications such as natural language understanding are
rarely able to choose a convenient grammar, so there is still a need for fast
parsers for ambiguous grammars.

Our work begins to address this problem. In this paper, we present an alter-
native method for constructing pushdown automata for use in LR parsing. We
then show how these pushdown automata can be used to drive a GLR parser,
giving a substantial speed increase.

2 LR and GLR Parsing

Space limitations prevent us from providing de�nitions for all notations and
conventions used in this paper. Unless stated otherwise, we are using conventions
similar to those used in compiler texts, such as [1].

Recall that a LR parser operates by \shifting" its input onto a stack, and
\reducing" the stack when a handle is recognized on top of the stack. A handle
is the right-hand side of a grammar rule, but only when reduction to the rule's
left-hand side would correspond to a rightmost derivation step of the input [1].

Formally, if A ! � is a grammar rule and S
�
=)
rm �Aw

=)
rm ��w, then � is

a handle at �. Under these circumstances, any pre�x of �� is called a viable
pre�x. We use the term \viable string" to refer to �� in its entirety. (� and �

symbolize strings of terminal and nonterminal symbols.)
Most current LR parsers are table-driven. They employ an automaton to

�nd handles; this automaton's transitions and the parser actions are encoded
into tables. A short generic algorithm is then su�cient to drive the LR parser.

GLR parsing builds on LR parsing. As we mentioned, Tomita observed that
a number of ambiguous grammars were mostly LR. With that in mind, Tomita's
algorithm behaves as a normal LR parser until it reaches a LR parser state
where there is a con
ict | the LR parser has a set of con
icting actions it could
perform, and is unable to choose between them. A Tomita parser is not able to
choose the correct action either, and instead simulates nondeterminism by doing
a breadth-�rst search over all the possibilities [6].

Conceptually, one can think of the Tomita parser reaching a con
ict, and
starting up a new parser running in parallel for every possible action; each new
parser \process" would have a copy of the original stack. A parser process that
�nds what seems to be erroneous input may assume that the action it took from
the con
ict point was the wrong one, and can terminate.

This cycle of a parser process starting others yields a wholly impractical
algorithm.The time spent making copies of parser stacks could be enormous, not
to mention the potentially exponential growth of the number of processes [23].
To address this, Tomita made two important optimizations:

1. A new process need not have a copy of its parent's stack. N processes can
share a common pre�x of a stack. From an implementation perspective,
elements of the stack can all contain pointers to point to the previous element
of the stack. Then, multiple stack elements can point to a common pre�x.

2. There are a �nite number of automaton states the parser can be in. Several
processes may be in the same state, albeit they may have di�erent stack
contents. A set of processes that are in the same state can merge their stacks
together, leaving one resulting process. This places an upper bound on the
number of parsing processes that can exist.

In a LR parser, its current state is the topmost state on the stack. So
to merge N stacks, one would remove the top node from each | they must
all have the same state number s | and create one node with state s that
points to the remainder of the N stacks.

The result of these optimizations is called a graph-structured stack. (A slight
misnomer, since the stacks actually form a directed acyclic graph.) The graph-
structured stack in Fig. 1, for instance, corresponds to four processes and �ve
conceptual stacks (the stack tops are the leaf nodes on the left-hand side).

Fig. 1. A graph-structured stack

3 Faster LR Parsing

Much attention has been devoted to speeding up LR parsers, and the majority
of this research pertains to implementation techniques. The argument is that in-
terpreted, table-driven programs are inherently slower than hardcoded, directly-
executable programs; given that, the best way to speed up a table-driven LR
parser is to convert it into a directly-executable form that needs no tables.

[16,8, 17, 3] all start with a LR parser's handle-�nding automaton and trans-
late it directly into source code | this source code can then be compiled1 to
create an executable LR parser. Basically, each state of the automaton is directly
translated into source form using boilerplate code. This process tends to produce
ine�cient code, so these papers expend e�ort optimizing the source code output.

Several other papers [18, 19, 13, 14, 7] have taken a slightly di�erent approach,
introducing a technique called recursive ascent parsing. Here, a LR parser is
implemented with a set of mutually recursive functions, one for each state2 in a
table-driven LR parser's handle-�nding automaton.

Unfortunately, all of the above work is of limited use when applied to a GLR
parser. LR parsers produce a single derivation for an input string. In terms of
implementation, a LR parser only needs to keep track of a single set of informa-
tion: the current parser state | what the parser is doing right now, and what
it's done in the past. In a table-driven LR parser, this information is kept on an
explicit stack; in a directly-executable LR parser, the information exists through
a combination of the CPU's execution stack and program counter.

1 Or assembled, as is the case in [16].
2 Two functions per state are reputed to be required in [14].

In contrast, a GLR parser produces all derivations for an input string. This
means that a GLR parser may need to keep track of multiple parser states
concurrently. To construct a directly-executable GLR parser, one would need to
maintain multiple CPU stacks and program counters. Certainly this is possible,
but the overhead in doing so and switching between them frequently would be
prohibitive, at least on a uniprocessor architecture.

Once direct execution of GLR parsers is ruled out, the obvious approach is to
speed up table-driven LR (and thereby GLR) parsers. Looking at the LR parsing
algorithm and its operation, one source of improvement would be to reduce the
reliance on the stack. Fewer stack operations would mean less overhead, resulting
in a faster parser.

The ideal situation, of course, is to have no stack at all! This would mean us-
ing �nite automata to parse context-free languages, which is theoretically impos-
sible [15]. Instead, we approximate the ideal situation. Our LR parsing method
is an analogue to the GLR algorithm: it uses e�cient �nite automata as long as
possible, falling back on the stack when necessary.

3.1 Limit Points

Our �rst step is to modify the grammar. When using a LR parser, the usual
heuristic is to prefer left recursion in the grammar when possible; left recursion
yields a shallow stack, because a handle is accumulated atop the stack and is
reduced away immediately.

Non-left recursion may be ill-advised in regular LR parsers, but it is anathema
to our method. For reasons discussed in the next section, we set \limit points" in
the grammar where non-left recursion appears. A limit point is set by replacing a
nonterminalA in the right-hand side of a grammar rule | a nonterminal causing
recursion | with the terminal symbol ?A.

Figure 2 shows a simpli�ed grammar for arithmetic expressions and the limit
point that is set in it. The rules of the resulting grammar are numbered for later
reference.

The process of �nding limit points is admittedly not always straightforward.
In general, there can be many places that limit points can be placed to break
a cycle of recursion in a grammar. We will eventually be resorting to use of the
stack when we reach a limit point during parsing, so it is important to try and
�nd a solution which minimizes the number of limit points, both statically and
dynamically.

For large grammars, it becomes di�cult to select appropriate limit points by
hand. The problem of �nding limit points automatically can be modelled using
the feedback arc set (FAS) problem [20]. Unfortunately, the FAS decision prob-
lem is NP-complete [9], and the corresponding optimization problem | �nding
the minimal FAS | is NP-hard [5]. There are, however, heuristic algorithms for
the problem. We have used the algorithm from [4] due to its relative simplicity.

The number of limit points obtained for various programming language gram-
mars is shown in Table 1. It is important to remember that these results were
computed using a heuristic algorithm, and that the actual number of limit points

S0 ! E $
E ! E + F
E ! F
F ! (E)
F ! n

@@
��

0 S0 ! E $
1 E ! E + F
2 E ! F
3 F ! (?E)
4 F ! n

Fig. 2. Expression grammar and limit points

required may be lower. For example, starting with the computed limit points,
hand experimentation revealed that no more than twelve limit points are needed
for the Modula-2 grammar.

Table 1. Limit points derived heuristically

Ada 42
ANSI C 38
Java 23
Modula-2 23

3.2 Finite Automata

What we want to construct is a �nite automaton which recognizes a viable string
and remembers it. In other words, when a �nal automaton state is reached, the
exact viable string is known. Simply recognizing a viable string with a �nite
automaton is unremarkable | standard LR parsers do this. The key point is
being able to remember the viable string that was seen.

This means that the entire set of viable strings for a grammar must be
enumerated, and a unique path must exist in our �nite automata for each one.
Unfortunately, while viable pre�xes can be described by regular languages [11],
most nontrivial grammars have an in�nite number of viable pre�xes, making
enumeration of viable strings challenging.

This is where the limit points in the grammar come in. By choosing appropri-
ate limit points, the set of viable strings for a grammar can be made �nite and
enumerable. Since viable strings can be generated by �nding all paths through
a LR parser's handle-�nding automaton, this is the same as saying that the LR
parser's automaton must have no cycles.

Once we have a �nite set of viable strings, we build a �nite automaton in
three steps:

1. Construct a trie [12] from the viable strings, omitting any � transitions. The
trie structure ensures that each viable string has a unique path.

2. Add \reduction transitions," which indicate reduction by a particular gram-
mar rule. Take all viable strings ��, where � is a handle of the rule A ! �.
Let s be the start state; q0 is the state at the end of the path �� starting
with s; q1 is the end state of the path �A, also starting with s. Assuming the
rule A ! � is numbered k, add a transition from q0 to q1 labelled reduce k.
As a special case, the �nal automaton state is the state at the end of the
path S$.

3. Delete transitions labelled with a nonterminal symbol, since these can never
be read from an input string.

For example, the expression grammar in Fig. 2 has the set of viable strings
fE$; E+F;E+n;E+(?E); F; n; (?E)g. Its �nite automaton is shown in Fig. 3.
(We use a shaded circle to indicate the start state.)

3.3 Pushdown Automata

At this point, we have a �nite automaton which only recognizes a subset of
the original language. To remedy this, we add a stack and create a pushdown
automaton.

How can a stack be incorporated? Intuitively, the ? transitions in the �nite
automaton are the natural places to push information onto a stack. When a ?
transition appears, essentially the �nite automaton is stating that it no longer
has a su�cient number of states to remember any more. By pushing information
at those points, a pushdown automaton is able to remember that which the �nite
automaton cannot.

To construct a pushdown automaton for a grammar G, we �rst build a �nite
automaton for G, FAG, as described in the last section. Then, while there are ?
transitions in FAG, we perform the following steps:

1. Choose a transition ?A.
2. Create a new grammarG? from G. Initially, all rules in G are placed in G?.

Then set the start symbol for G? to be A, and remove all rules from G?

that are unreachable from this new start symbol. Augment G? with the rule
A0 ! A pop.

3. Construct a �nite automaton for G? using the method in the last section;
call it FA?. FA? will act as a \subroutine" for FAG in the sense that when
FAG reaches the ?A transition, it will push a \return state" onto a stack,
then go to FA?'s start state. When FA? reaches a pop transition, it goes to
a state which is popped o� the stack.

4. Say that the transition on ?A in FAG was made from state q0 to state q1.
Delete that transition from FAG, replace it with a transition from q0 to the
start state of FA?, and label the new transition push q1.

5. Merge FA? into FAG. Since these construction steps continue while there
are ? symbols in FAG, this means that all ? symbols in FA? eventually get
replaced.

1

2

$

3

+

6

(

12

n

7

⊥E

8

)

4

reduce 3

0

9

(

13

n

10

⊥E

11

)

5

reduce 3

reduce 4

reduce 4

reduce 1

reduce 2

Fig. 3. Finite automaton for the expression grammar

The result of the above steps is a pushdown automaton for G; the pushdown
automaton for our running example is shown in Fig. 4. As all the FA? \sub-
routines" are built independently of any left context seen by their \caller," they
can be re-used in other contexts. So the maximum number of FA? that will be
created for G is bounded by the number of limit points.

Figure 5 shows how the input string ((n + n)) is recognized by the push-
down automaton in Fig. 4. This example demonstrates that our pushdown au-
tomaton requires much fewer stack operations than a conventional LR parser.

4 Faster GLR Parsing

4.1 Algorithm

To use a pushdown automata from the last section as the engine for a GLR
parser, we have devised a modi�ed algorithm which is based on the work of
Tomita [21{23].

Our algorithmuses two major types of structures: one for processes, the other
for stack nodes.

1. Processes. Each process structure has a automaton state number and a
pointer to a stack top associated with it.

Process structures are linked into one of two lists. The current process
list contains the processes that still require processing for the current input
symbol; the pending process list contains processes that will need processing
when the next input symbol is read. Every time a new input symbol is read,
the pending process list becomes the current process list.

2. Stack nodes. There are two types of stack nodes:

(a) Data nodes. This type of node contains the actual data of a process'
stack. Each data node holds a single automaton state number, and a
pointer to a previous stack node (i.e. pointing away from the stack top).
If we used only this type of stack node, then we would have a tree-
structured stack.

(b) Fan-in nodes. These nodes are used to make the graph-structured stack;
each one contains a set of pointers to previous stack nodes. When two
process' stacks are merged, a fan-in node is created which holds pointers
to both stacks. In our implementation, to bound the amount of e�ort
required to �nd a data node, we add the constraint that a fan-in node
may only point to data nodes.

The pseudocode for the modi�ed GLR algorithm is shown in Figs. 6{7.

4.2 Results

We performed some timing experiments to compare a standard GLR parser with
our modi�ed GLR parser. As a basis for comparison, we used the public domain

15

(to popped state)

pop

17

+

18

(

24

n

1914

push 19

20

)

26

reduce 3

21

(

25

npush 22

22

23

)

27

reduce 3

reduce 4

reduce 4

reduce 1

reduce 2

1

2

$

3

+

6

(

12

n

push 7

7

8

)

4

reduce 3

0

9

(

13

n

push 10

10

11

)

5

reduce 3

reduce 4

reduce 4

reduce 1

reduce 2

Fig. 4. Pushdown automaton for the expression grammar

Stack State Input Action
0 ((n + n))$ shift 9
9 (n + n))$ push 10, goto 14

10 14 (n + n))$ shift 21
10 21 n + n))$ push 22, goto 14
10 22 14 n + n))$ shift 25
10 22 25 + n))$ reduce 4, goto 27
10 22 27 + n))$ reduce 2, goto 15
10 22 15 + n))$ shift 17
10 22 17 n))$ shift 24
10 22 24))$ reduce 4, goto 26
10 22 26))$ reduce 1, goto 15
10 22 15))$ pop, goto popped state
10 22))$ shift 23
10 23)$ reduce 3, goto 27
10 27)$ reduce 2, goto 15
10 15)$ pop, goto popped state

10)$ shift 11
11 $ reduce 3, goto 5
5 $ reduce 2, goto 1
1 $ shift 2, accept

Fig. 5. Example parser trace

GLR parser available from the comp.compilers Usenet newsgroup archive.3 It
uses LR(0) parse tables internally which are computed at startup. Both it and
our modi�ed GLR parser are implemented in C.

To ensure a fair comparison, we have modi�ed our parser so that it incurs the
same startup penalty and lexical analysis overhead as the public domain parser.

All tests were run on a Sun SPARCsystem 300 with 32M of RAM. Both
parsers were compiled using gcc with compiler optimization (-O) enabled. To
try and mitigate the e�ect of unpredictable system conditions on our timings,
we ran the tests �ve times on each input; the results we report are the arithmetic
mean of those times.

Our results are shown in Figs. 8{9 along with the grammars used, which we
have numbered for convenience of reference. Each grammar is shown both with
and without limit points.

Grammar 1 is an ambiguous grammar derived from one in [10]. Reductions
in ambiguous grammars by rules with longer and longer right-hand sides are
exponentially more expensive for GLR parsers. This is because GLR parsers,
upon reduction by a rule A! �, must �nd all paths of length j�j from a stack top
in the graph-structured stack. On the other hand, our modi�ed GLR algorithm
always takes a negligible time for reductions, as re
ected in the results.

3 http://www.iecc.com as of this writing.

function process(P, input) f
foreach a 2 action(input, P.state) f

switch (a) f
case SHIFT n:

mergeInto(pending, n, P.stack)

case REDUCE A ! �, GOTO n:

mergeInto(current, n, P.stack)

case PUSH m, GOTO n:

mergeInto(current, n, push(m, P.stack))

case POP:

let S be the set of stack data nodes atop P.stack

foreach node (state, stack) 2 S f
mergeInto(current, state, stack)

g
g

g
g

initialize pending process list to be empty

initialize current process list to be a single process,

at the automaton's start state with an empty stack

while (current process list is nonempty) f
input = getNextInputSymbol()

while (current process list is nonempty) f
remove a process P from the list

process(P, input)

g
exchange the current and pending process lists

if (input == EOF) f
if (process in current process list is in accept state)

accept input

else

reject input

g
g
reject input

Fig. 6. Faster GLR parsing algorithm

function mergeInto(list, state, stack) f
Looks in the specified process list for a process with

a matching state as that passed in. If it finds such

a process, it simply merges its stack with the one

passed in; if not, it creates a new process structure

with the given state number and stack pointer, and adds

it to the specified process list.

g

function push(state, stack) f
Returns a new stack data node containing the given

state and stack pointer.

g

function action(inputSymbol, state) f
Based on its parameters, returns a set containing

zero or more of:

SHIFT n

REDUCE A ! �, GOTO n

PUSH m, GOTO n

POP

g

Fig. 7. Faster GLR parsing algorithm (continued)

S ! S S S
S ! x S
S ! x

@@
��

S ! S ?S ?S
S ! x ?S
S ! x

0.1

1

10

100

1000

10 20 30 40 50

T
i
m
e

(
s
e
c
o
n
d
s
)

Input symbols

Modified GLR
GLR

Fig. 8. Timings for Grammar 1

S! S S
S! x

@@
��

S ! S ?S
S ! x

0.01

0.1

1

10

100

1000

10 20 30 40 50 60 70 80 90 100

T
i
m
e

(
s
e
c
o
n
d
s
)

Input symbols

Modified GLR
GLR

Modified GLR (custom alloc)

Fig. 9. Timings for Grammar 2

Grammar 2 is another ambiguous grammar from [10]. It is one of the worst
cases for our modi�ed GLR algorithm, requiring it to perform numerous stack
operations on multiple stacks. This test is also interesting because it underscores
the importance of memory management in GLR parsers. Pro�ling of our parser
has shown that over 40% of total run time can be spent doing memory allocation
and deallocation when parsing ambiguous grammars. Figure 9 shows our parser
having an adversarial relationship with the standard C memory allocator, and
the result of adding a custom-built memory allocator.

5 Future Work and Conclusion

There are a number of avenues for further work. Our GLR algorithm should be
extended to take lookahead into account, and semantic actions should be sup-
ported. In terms of the grammar, the notion of limit points can be generalized
so that recursion in the grammar is \unrolled" much as an optimizing compiler
might unroll a loop; we have done some preliminary work on this possibility [2].
We would also like to conduct more experiments against other GLR parser im-
plementations, to determine if the results we have obtained are typical.

In this paper, we have presented an alternative way to construct pushdown
automata for use in LR parsers. These automata, when used in our modi�edGLR
parsing algorithm, have substantially lowered parsing time when compared to a

regular GLR parser. Our timings show an improvement by up to a factor of ten
for highly-ambiguous grammars.

By trading space for time | a larger LR parser in exchange for faster exe-
cution times | we are able to build GLR parsers which are faster and better
suited to more widespread application outside the natural language domain.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley, 1986.
2. J. Aycock. Faster Tomita Parsing. MSc thesis, University of Victoria, 1998.
3. A. Bhamidipaty and T. A. Proebsting. Very Fast YACC-Compatible Parsers (For

Very Little E�ort). Technical Report TR 95{09, Department of Computer Science,
University of Arizona, 1995.

4. P. Eades, X. Lin, and W. F. Smyth. A fast and e�ective heuristic for the feedback
arc set problem. Information Processing Letters, 47:319{323, 1993.

5. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, 1979.
6. D. Grune and C. J. H. Jacobs. Parsing Techniques: A Practical Guide. Ellis

Horwood, 1990.
7. R. N. Horspool. Recursive Ascent-Descent Parsing. Journal of Computer Lan-

guages, 18(1):1{16, 1993.
8. R. N. Horspool and M. Whitney. Even Faster LR Parsing. Software, Practice and

Experience, 20(6):515{535, 1990.
9. R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and

J. W. Thatcher, editors, Complexity of Computer Calculations, pages 85{103.
Plenum Press, 1972.

10. J. R. Kipps. GLR Parsing in Time O(n3). In Tomita [24], pages 43{59.
11. D. E. Knuth. On the Translation of Languages from Left to Right. Information

and Control, 8:607{639, 1965.
12. D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.

Addison-Wesley, 1973.
13. F. E. J. Kruseman Aretz. On a Recursive Ascent Parser. Information Processing

Letters, 29:201{206, 1988.
14. R. Leermakers. Recursive ascent parsing: from Earley to Marcus. Theoretical

Computer Science, 104:299{312, 1992.
15. H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation.

Prentice-Hall, 1981.
16. T. J. Pennello. Very Fast LR Parsing. In Proceedings SIGPLAN '86 Symposium on

Compiler Construction, volume 21(7) of ACM SIGPLAN Notices, pages 145{151,
1986.

17. P. Pfahler. Optimizing Directly Executable LR Parsers. In Compiler Compilers,

Third International Workshop, CC '90, pages 179{192. Springer-Verlag, 1990.
18. G. H. Roberts. Recursive Ascent: An LR Analog to Recursive Descent. ACM

SIGPLAN Notices, 23(8):23{29, 1988.
19. G. H. Roberts. Another Note on Recursive Ascent. Information Processing Letters,

32:263{266, 1989.
20. E. Speckenmeyer. On Feedback Problems in Digraphs. In Graph-Theoretic Con-

cepts in Computer Science, pages 218{231. Springer-Verlag, 1989.

21. M. Tomita. An E�cient Context-Free Parsing Algorithm for Natural Languages

and Its Applications. PhD thesis, Carnegie-Mellon University, 1985.
22. M. Tomita. E�cient Parsing for Natural Language. Kluwer Academic, 1986.
23. M. Tomita. An E�cient Augmented-Context-Free Parsing Algorithm. Computa-

tional Linguistics, 13(1{2):31{46, 1987.
24. M. Tomita, editor. Generalized LR Parsing. Kluwer Academic, 1991.

