
Optimizing for Space and Time Usage with
Speculative Partial Redundancy Elimination

Bernhard Scholz
School of Information Technologies

Madsen Building F09
University of Sydney
NSW 2006, Australia

scholz@it.usyd.edu.au

Nigel Horspool

Department of Computer Science
University of Victoria

Victoria, BC
Canada V8W 3P6

nigelh@uvic.ca

Jens Knoop

Technische Universität Wien
Institut für Computersprachen

Argentinierstrasse 8
1040 Wien, Austria

knoop@complang.tuwien.ac.at
Abstract
Speculative partial redundancy elimination (SPRE) uses execution
profiles to improve the expected performance of programs. We
show how the problem of placing expressions to achieve the
optimal expected performance can be mapped to a particular kind
of network flow problem and hence solved by well known
techniques. Our solution is sufficiently efficient to be used in
practice. Furthermore, the objective function may be chosen so
that reduction in space requirements is the primary goal and
execution time is secondary. One surprising result that an
explosion in size may occur if speed is the sole goal, and
consideration of space usage is therefore important.

Categories and Subject Descriptors
D.3.4 [Programming Languages] Compilers, Optimization.

General Terms
Algorithms, Measurement, Theory

Keywords
code motion, common subexpressions, partial redundancy,
profile-guided optimization, speculation

1. INTRODUCTION
Partial redundancy elimination (PRE) removes redundant
computations in a program [13]. It is a standard optimization
technique in modern compilers. Most PRE algorithms involve
Code Motion [12] and do not take profile information into
account. They are therefore conservative in nature, not
inserting a new computation of an expression if there is the
risk of increasing the dynamic number of computations
performed by the program on some execution path.

Speculative partial redundancy elimination (SPRE) inserts new
computations on low frequency paths and removes them from
high frequency paths, with the goal of minimizing the expected
number of computations [9,6]. However, not all computations
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
LCTES’04, June 11–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-806-7/04/0006…$5.00.
are suitable for SPRE. If a computation is inserted at some
program point where the computation is not anticipable (i.e. it
is not computed on all paths which originate at that program
point), then the computation should be free of side-effects. For
example, an expression that may cause a divide by zero
exception should not be inserted on a path where that same
expression did not occur in the original program.

Figure 1 shows a running example used throughout this paper;
the expression to be optimized is a+b. Nodes in this control
flow graph are labelled B1 through B9, and their execution
frequencies (obtained by profiling or other means) are shown
as an italicized number alongside each block. This initial
version of the program contains 3 static occurrences of a+b
and 106 dynamic computations of a+b.

If SPRE were to be applied in its normal way, optimizing for
speed and therefore minimizing the expected number of
computations of a+b, we would obtain the optimized version of
the program shown in Figure 2. The key improvement is to
make the value of a+b available in a new variable h before the
loop is entered. This allows the computation in node B7 to be
eliminated, replaced by a reference to h. However node B8
invalidates (kills) the value held in h; to make a+b available

Figure 1. The running example

Before

a:=z:=a+b

B1

B6

B7 B8

B9

10

100

90 10

100

B2 B3 B4

B5

2 6 2

10

a:= a:=x:=a+b

Optimization

y:=a+b

on the next iteration we had to insert a new computation of
a+b at the end of B8. To make a+b available in h ready for
entry to the loop, we had to insert new computations of a+b in
nodes B2 and B4, and we had to modify the code in node B3.
The result is that the program of Figure 2 has 4 static
occurrences and 20 dynamic computations of a+b. Note that
although the program should be significantly faster than the
original, the program would also be larger because it contains
more static occurrences. This result may not be desirable for an
embedded system application where space is often a critical
resource, more so than execution time.

A different transformation of the running example is shown in
Figure 3. This version makes a+b available on loop entry in a
different way. The result is that the new program contains 3
static occurrences and 26 dynamic computations of a+b.
Although this version of the program would be a little slower
than the one shown in Figure 2, it should also be a little
smaller. After compilation and after the usual compiler
optimizations of copy propagation, etc., it should be close in
size to the original program of Figure 1 and yet significantly
faster. Depending on the relative importance of space versus
time for the application, this version may well be optimal for
an embedded system application.

Our new SPRE algorithm allows an objective function to be
used which accounts for memory usage or for execution time
or for any linear combination of the two. By giving space a
non-zero weighting, we can achieve reductions in size while
simultaneously making the program run faster – the result
shown in Figure 3.

Although our technique is not the first to offer an optimal
solution to the SPRE problem [3], we believe it has these
significant advantages.

• With our formulation, it is easy to choose between
different cost models, thus allowing us to optimize for
speed, code size, power consumption or any linear

combination of them. Both code size and power use are
especially relevant for embedded systems applications.

• We map the problem to a form of network flow problem,
known as Stone’s Problem, for which optimal solutions
can be efficiently found in polynomial time.

2. BACKGROUND
2.1 Control Flow Graph
A control flow graph G < N,E,s,f> is a directed rooted graph
with the node set N, an edge set E ⊆ N×N, and two
distinguished nodes s ∈ N, a unique start (or entry) node, and f
∈ N, a unique final (or exit) node.

Edges (u,v) ∈ E represent the (possibly non-deterministic)
branching structure of G. The functions succ(u) = { v | (u,v) ∈
E } and pred(u) = { v | (v,u) ∈ E } represent the immediate
successors and immediate predecessors of node u. A finite path
of G is a sequence π = <υ1, u2, …, uk> of nodes such that ui+1
∈ succ(ui) for all 1 ≤ u < k. Symbol ε denotes the empty path.
The notation Path(u,v) denotes the set of paths starting at node
u and ending at node v. A graph G < N,E,s,f > is well formed if,
for all nodes u ∈ N, there exists a path from the start node s to
node u and from u to the final node f.

Without any loss of generality, we make two assumptions
which simplify our presentation of the new SPRE algorithm.
First, we assume that each node n represents a single simple
statement, not a basic block. Generalization of the SPRE
algorithm to use basic blocks is straightforward, but multiplies
the number of cases which would need to be explained later on.
Second, we assume that statements of the form a:=exp where
a is an operand of exp, are expanded to two statements
t:=exp; a:=t which compute the right-hand side
expression and modify the operand separately, where t is a
new temporary variable. Forbidding “recursive” assignments
like a:=a+b again reduces the number of cases which need to

Figure 2. Running example – optimized for speed

Optimized for

a:=z:=h

B1

B6

B7 B8

B9

10

100

90 10

100

B2 B3 B4

B5

2 6 2

10

a:= a:=h:=a+b

h:=a+b

h:=a+b h:=a+bx:=h

Speed Only

y:=h

Figure 3. Running example – optimized for
both space and time

Optimized for

a:=z:=h

B1

B6

B7 B8

B9

10

100

90 10

100

B2 B3 B4

B5

2 6 2

10

a:= a:=x:=a+b

h:=a+b

h:=a+b

Space & Time

y:=h

be explained. Removing this restriction in an implementation
of the PRE algorithm is straightforward.

3. LOCAL TRANSFORMATION
In this section we consider properties of nodes in the CFG and
a local transformation. Partial redundancy elimination is
normally performed for all computations in a set. However, the
optimization can be performed for each computation
separately, achieving the same final result. Therefore, to
simplify our exposition, we detail the PRE algorithm for just
one computation e and we refer to it as the computation.

As already stated, we simplify the explanation further by using
CFGs in which nodes represent simple statements. It is easy to
generalize our technique to basic blocks.

For our program transformation, we introduce a new temporary
variable he. This variable is used to hold the value of
computation e for later reuse. For every node u in the CFG, we
identify two program points – the entry to the node, labelled by
iu, and the exit from the node, which is labelled by ou. Our
analysis technique will determine whether we wish the
computation e to be available at each of these program points.
And, if the analysis does decide that e is to be available at the
entry to a node u then the code inside u can potentially be
simplified to access the value of e from variable he instead of
recomputing e.

Given the set of 2|N| entry and exit labels, our algorithm will
partitition that set into two subsets, and . The former
subset, , is a set of program points where we wish to ensure
that e is available in the variable he. The latter subset, ,
contains all the other labels. At these places, we do not care
whether e is available after the transformation.

Therefore, if and if our code transformations are
performed correctly so that e is actually available at all these
program points, then a computation of e within node u can be
deleted – replaced with a use of he instead, thus reducing the
cost of executing that node. However, putting iu in may
incur costs elsewhere in the program, because it may be
necessary to insert code of the form he:=e in one or more other
nodes. Note that the labels iu and ou that we associate with a
node u are not to be confused with data-flow predicates. They
are not predicates at all. We use the notion of “labels” because
the labels can be easily mapped to elements of Stone’s
problem, to which we are going to reduce the SPRE problem.

The problem of performing partial redundancy elimination in
an optimal manner thus reduces to the problem of making a
globally optimal determination of and , such that the
program semantics is not destroyed and the total program cost
is minimized.

For a node u, there are four combinations of choices to
consider: the entry label is a member of either or , and
the exit label is also a member of either or . We call
these combinations scenarios.

Because of our simplifying assumptions that CFG nodes are
simple statements and that no statement is “recursive” (of the
form a:=a+b), we have just three kinds of program nodes to
consider. They are as follows.

1. a node that neither computes nor kills e (NULL case),

2. a node that computes e and does not subsequently kill it
(COMP case),

3. a node that does not compute e and kills e (MOD case).

We diagram the three cases when e is the expression a+b in
Figure 4.

Each combination of a scenario with the local properties of a
node gives rise to different costs. In some scenarios, we are
forced to compute e and assign it to he; in some others, we can
substitute he for a computation of e. Intuitively, re-computing
is more expensive than re-using. We introduce a cost function
to model these costs.

DEFINITION 1. Let cstu : { , } × { , } → Z0 be the cost
function cstu(iu, ou) of a CFG node u, which gives the costs for a
scenario.

A scenario has either a zero cost if the computation is not
performed or one cost unit if the computation has to be
performed. For each scenario and each kind of node, we can
enumerate which code transformations are required — both to
make e available on exit when and to take advantage of
e being available on entry if . For each combination we
specify a cost and a (local) code transformation to perform, as
shown in Table 1.

The code transformation actions are listed in Table 2.

This way, each partitioning of labels into the sets and
specifies a (global code motion) transformation. In the
following section, we will discuss when such a transformation
is correct in the context of speculative PRE.

Before doing so, note that we implicitly assume t=a+b; and
h=a+b; t=h; to have the same execution cost. The cost of an
extra move instruction in the second version could be taken
into account, if we so desired. However, copy propagation is

Ae Ae
Ae

Ae

iu Ae∈

Ae

Ae Ae

Ae Ae
Ae Ae

Figure 4. Three cases for nodes

Table 1. Costs and actions for scenarios

Case Scenario Cost Action

MOD 0 –

 1 insertX

 0 –

 1 insertX

COMP 1 –

 1 insertN (and delete)

 0 delete

 0 delete

NULL 0 –

 1 insert

 0 –

 0 –

NULL Case

a←

MOD Case

←a+b

COMP Case

Ae Ae Ae Ae

ou Ae∈
iu Ae∈

Ae Ae

Ae Ae

Ae Ae

Ae Ae

Ae Ae

Ae Ae

Ae Ae

Ae Ae

Ae Ae

Ae Ae

Ae Ae

Ae Ae

Ae Ae

performed after PRE and move instructions are often
eliminated.

4. PROGRAM TRANSFORMATION
As already stated, the partitioning of the set of labels
{ iu, ou | u ∈ N } between and represents a program
transformation for speculative partial redundancy elimination.
However, not all partitions preserve program semantics.
Intuitively, there cannot be a node u for which but
where it has a successor node v for which .

Conceptually, a PRE transformation for e can be considered a
three-step procedure.

1. Introduce a temporary variable he to store the value of e.

2. Insert computations he := e at some program points.

3. Replace some source code computations of e by he.

Conservative PRE considers a transformation matching this
pattern admissible, if (1) insertions never introduce a
computation of e on a path from s to f yielding a new value on
that path, and (2) if a computation of e always yields the same
value which is stored in he, when he is used to replace a source
code computation of e at some program point.

It is the first constraint, which prevents conservative PRE in
the tradition of the seminal work of Morel and Renvoise [13]
from achieving the optimization transformation displayed in
Figure 2. For speculative PRE, however, we can drop the first
constraint, and only keep the second one, which is
indispensable. This leads to the following more formal
definition of a correct speculative PRE transformation. It relies
on the predicates storeN, storeX, and replace defined for nodes.
Here, the former two predicates indicate whether the value of e
has to be stored at the entry or exit of the argument node,
respectively, and the latter, whether a source code computation
of e is to be replaced at the argument node. These correspond
to the actions listed in Table 2.

4.1 Correctness
Denoting the set of all program transformations matching the
three-step pattern of a PRE-transformation by PRE, we can
define:

DEFINITION 2. [Correctness] A program transformation of PRE
is correct (in the context of speculative PRE) iff
 ∀p = < u1,…,uk> ∈ Path(s,f): ∀i (1≤ i≤k):
 replace(ui) ⇒
 ((∃j (1≤j≤i): storeN(uj): ∀k (j≤k< i): COMP(uk) ∨ NULL(uk))
 ∨ (∃j (1≤j< i): storeX(uj): ∀k (j<k<i): COMP(uk) ∨ NULL(uk))

In the following we denote the subset of correct program
transformations of PRE by SPRE. We are now ready to focus
on optimal speculative PRE transformations.

4.2 Optimality

DEFINITION 3. [Optimality] A program transformation of SPRE
is optimal for a given profile iff the objective function

(1)

is minimal, where frq(u) denotes the frequency of execution of
node u, i.e. it represents dynamic cost, and spc(u) denotes a
space factor cost that would be incurred for making an
insertion into node u. We would usually choose to have spc(u)
be a constant, independent of which node contains the insertion
(though the constant may depend on which expression is the
subject of the analysis and represent the number of instruction
bytes needed for its evaluation). We denote the set of all
optimal transformations of SPRE by SPREopt. The parameters
α and β determine the trade-off between space and time.

If α>0 and β=0, we optimize purely for speed. Conversely, if
α=0 and β>0, we optimize purely for space. Other
combinations of non-negative values make any trade-off we
like between time and space.

For any choice of a cost function, we want an optimal program
transformation of SPRE. Note that by definition this implies
correctness of this transformation as well.

5. STONE’S PROBLEM
We will map our formulation of SPRE to Stone’s Problem [16],
which we use as a means for obtaining an optimal program
transformation in polynomial time. We give a brief overview
of Stone’s problem outlining, where appropriate, the
relationship of the SPRE problem to this problem. We will
explain the mapping of the SPRE problem to Stone’s Problem
in more detail in Section 6.

Stone has solved the process allocation problem for two
processors in polynomial time by using s-t min-cut reduction.
Stone’s problem assumes a set of processes P = {p1, ..., pk}
with different execution time requirements, and two processors
A and B with different execution speeds.1 The total execution
time will depend on which processes are assigned to which
processors. In addition, communication might occur between
two processes. If there is communication between two
processes and they have been assigned to different processors,
we have to take communication costs into account.

More formally, we introduce cost functions which reflect the
execution and communication costs of Stone’s problem. First,
the cost functions wA(p) and wB(p) give the execution costs of
process p if executed on processor A or processor B,
respectively.2 Second, the communication costs between two
processes p1 and p2 are given by wAB(p1, p2). Note that
communication costs are only taken into account if the two
processes are assigned to different processors; otherwise the
communication costs are implicitly zero.

Table 2. Transformation actions

– No transformation is performed

insertX Insert computation he := e at exit from node

insertN Insert computation he := e at entry to node and
replace the computation of e with a use of he

delete Replace the computation of e with a use of he

Ae Ae

ou Ae∈
iv Ae∈

1 In our application the entry and exit labels will play the role of
processes, and the sets and the role of the processors.

2 Considering our application, the execution costs will be given by
the frequency information of the program profile.

f cstu iu ou,() αfrq u() βspc u()+()
u

∑=

Ae Ae

Then, Stone’s problem is defined as follows.

DEFINITION 4. [Stone’s Problem] Given a set P, find two parti-
tions A and B of P (i.e. P=A∪B and A∩B=∅) such that the objec-
tive function

(2)

is minimal.

Consider the example in Figure 5. In this example we have
three processes. The execution times of the processes on both
processors are given in Figure 5(a). Column wA gives the
execution time for processor A and column wB gives the
execution time for processor B. The communication costs are
shown in Figure 5(b). In this example, the table is symmetric
(i.e. wAB(p1, p2) is equal to wAB(p2, p1)), though this is not a
necessity.

Without employing the s-t min-cut reduction, it is quite clear
that processes p1 and p3 should be executed on processor A.
Only p2 should be performed on processor B. For this process
allocation, the overall execution time has three cost units.
Other allocations have significantly higher execution costs.
Though there are communication costs between processes p1
and p2, and communication costs between processes p2 and p3,
the overall communication costs are lower than letting the
processes run on the same processor.

Stone’s problem can be algorithmically solved by employing a
s-t min-cut reduction. A s-t network is constructed such that

every process of Stone’s problem is represented by a node in
the network. In addition, there are two artificial nodes, i.e. the
start and target node of the network.

For execution costs of processor A, edges between the
processes and a special sink node f are added. The capacity of
each edge reflects the execution time of the corresponding
process on processor A. Correspondingly, edges are added
between a special source node s and the processes which
reflect the execution time of Processor B. Finally, edges are
inserted which model the communication costs between
processes. The capacity of an edge between processes p1 and
p2 is given by the communication costs wAB. After
constructing the network, the set of cut edges with minimal
costs disconnects the graph into two partitions. Stone [16]
showed that the objective function of Definition 4 is identical
to the minimum cut-set of the constructed s-t network. The cut-
set can be found by computing the max-flow of the s-t network
[4].

For our example, the s-t min cut reduction is shown in Figure
5(c). All three processes appear as nodes in the s-t network.
The execution costs for processor A are modelled as edges
between processes and the target node. Similarly, the edges
between source node and the processes reflect the execution
costs on processor B. Communication occurs between
processes p1 and p2 and processes p2 and p3. Since we have to
take both directions into account, edges in both directions are
added. In Figure 5(c) edges are labelled with two numbers. For
example the label 3/10 appears between p2 and f. The first
number, 3, gives the flow that was computed by the max-flow
problem; the second number, 10, gives the capacity of the edge
as determined from the tables in parts (a) and (b) of the figure.
Based on the flow, the cut-edges can be determined (for a cut
edge it is necessary that the flow is equal to the capacity). For
our example the cut-edges are {(s, p2), (p1, p2), (p2, p3), (p1, t),
(p3, t)} which disconnect the set of processes into two
partitions. The sum of the weights of all cut edges yields the
minimum of Stone’s objective function which is 5 in our case,
comprising 3 cost units for execution and 2 cost units for
communication.

6. MAPPING

In this section, we show the mapping of SPRE to Stone’s
problem. First, we convert the cost functions of the local
transformations summarized in Table 1 into a mathematical
notation as shown in Table 3. Basically, the three cases for a
node u can be written as conditional functions. For the COMP
case, a computation (the original computation in that node) is
performed if the entry label iu is not in (otherwise the
computation in the node would be deleted). The MOD case
requires the introduction of a computation if the exit label ou
specifies that the computation must be available at the exit.
The NULL case is more complex: a computation of e must be
inserted in the node if the entry label iu is not in but the exit
label ou is a member of .

Constructing the network. The entry and exit labels
correspond to the processes of Stone’s problem, and the
processors correspond to the two possible sets (and)
between which the labels are to be partitioned. Different costs
are imposed for placing a label in the set or in the set.

Figure 5. Example of Stone’s Problem

f wA p()

p A∈
∑ wB p()

p B∈
∑ wAB p q,()

p A∈ q B∈∧
∑+ +=

P wA wB wAB p1 p2 p3

p1 1 10 p1 0 1 0

p2 10 1 p2 1 0 1

p3 1 10 p3 0 1 0

(a) Execution Costs (b) Communication Costs

s fp2

p1

p3

2/10

2/10

1/1

1/1

1/1

1/1

1/1

0/1

0/1

3/10

wA

wB

wAB

B partition
A partition

(c) s-t Min Cut

Ae

Ae
Ae

Ae Ae

Ae Ae

We can transform the objective function into an objective
function of Stone’s problem as follows. Given the cost formula

then for all nodes υ ∈ COMP, we use if
 and 0 otherwise; for all nodes u ∈ MOD we use

 if and 0 otherwise; finally for all
nodes u in NULL we use if ,
and 0 otherwise.

The mapping to Stone’s problem is straightforward in the
above formulation. When we are minimizing the expected
number of computations of the expression e, the costs of wA
and wB are either zero or the execution frequency of node u.
When we are minimizing for space, the costs of wA and wB are
either zero or one. (Cost measures which combine space and
time can be specified in the obvious manner.) The costs for the
transparent case can be mapped to communication costs
between two processes. In contrast to Stone’s original
formulation, the mapping does not consider symmetric
communication costs. This means, that the reverse case (i.e.
the exit label is in while the entry label is in) is not
needed to obtain an optimal solution. Intuitively, an optimal
solution that contains an instance of the reverse case can
always be transformed to an equally optimal solution by
moving the exit label from to (as we can do if the node
does not kill e).

However, correctness constraints need to be considered; we
can incorporate them into the cost model with a simple
transformation. We add a term ∆ to the objective function f.
The value of ∆ is zero if the correctness constraints are
fulfilled and infinite otherwise.

LEMMA 1.

(3)

The new objective function h is equivalent to f iff the
constraints hold – otherwise it equals ∞.

The ∆ term is chosen as infinity in two cases. First, the entry
label for the start node s is required to be an element of so
that no computations are assumed to be available when the
program starts; thus we assign infinite cost to the entry label is
being in . The second case arises if one of the correctness
constraints along a program edge is violated.

The first constraint sets the costs for is to infinity if it is
member of . The second constraint is mapped to the

communication costs of Stone’s problem. The correctness
constraint is violated iff, for an edge (u,v) ∈ E, the label iv is in

 and the label ou is in . In other words, correctness is
violated if the succeeding node expects the computation but
the preceding node does not deliver the computation. It is the
only case when the constraint is violated

In Stone’s problem this can be simply modelled with
communication costs, i.e. for every edge (u,v) ∈ E in the
control flow graph, we insert an edge in the network between
ou and iv and attach infinite weight to this edge.

The Running Example. For our running example, we
construct the s-t min-cut network as demonstrated in Figure 6.
The nodes in the network are the entry and exit labels
associated with the CFG nodes. We draw these labels inside a
box for each node, where we used a white box for a NULL
node case, a solid grey box for a COMP case, and a striped box
for a MOD case. For example, node B1 represents a NULL
case, B2 is a MOD case, and B3 is a COMP case.

The edges in the network either model computational costs or
correctness constraints. Each edge is labelled with an
annotation like a/n. The second number n denotes the
maximum capacity of the edge, as determined by the constraint
rules. The first number, a, denotes the flow along that edge
when the max-flow is determined for the network with the
given edge capacities.

To solve SPRE finding the optimal number of dynamic
computations, we construct edges as follows.

• For each edge (u,v) ∈ E in the control flow graph, insert an
edge (ou, iv) in the network with infinite capacity.

• For each NULL node u, create an edge (iu, ou) with
capacity frq(u).

• For each COMP node u, add an edge (iu, f) with capacity
frq(u).

• For each MOD node u, add an edge (s, ou) with capacity
frq(u).

• Create an edge (s, i1) with infinite capacity, where block
B1 is assumed to be the entry node of the CFG.

The max-flow of the example is 20 cost units, which
corresponds to the min-cut shown as the dotted line in Figure
6. The capacities of the edges crossed by the min-cut line are 2,
6, 2 and 10 which sum to 20. This means that the lowest
dynamic cost for the running example is 20. Using the min-cut
solution, we divide the set of labels into the “not needed”
partition () and the “computed” partition () as desired.
The not needed partition is {s, i1, o1. i2, i3, i4}; the needed
partition contains all the other labels, namely {o2, o3, o4, i5,
o5, i6, o6, i7, o7, i8, o8, i9, o9, f}. Applying the local
transformations to each block as determined by the label
partitioning leads to the optimized program presented in
Figure 2

6.1 The Program Transformation
After partitioning the labels, we can perform the local
transformations on the nodes, which were described in Section
3. As desired, this results in the global transformation which
has already been shown in Figure 2.

Use of a cost function which incorporates a space component
would produce the transformation shown in Figure 3.

Table 3. Cost functions for local transformations

COMP cstu(iu,ou) =

MOD cstu(iu,ou) =

NULL cstu(iu,ou) =

1, iu Ae∈

0, iu Ae∈
⎩
⎪
⎨
⎪
⎧

1, ou Ae∈

0, ou Ae∈
⎩
⎪
⎨
⎪
⎧

1, iu Ae∈ ou Ae∈∧

0, otherwise
⎩
⎪
⎨
⎪
⎧

f cstu iu ou,() αfrq u() βspc u()+()
u

∑=

cstu iu ou,() 1=
iu Ae∈
cstu iu ou,() 1= ou Ae∈

cstu iu ou,() 1= iu Ae∈ ou Ae∈∧

Ae Ae

Ae Ae

h f ∆+=

Ae

Ae

Ae

Ae Ae

Ae Ae

6.2 Correctness and Optimality

The following two lemmas help prove the correctness and
optimality of the transformation resulting from our analysis.

LEMMA 2. Let and be a partitioning of labels, and let τ be
the program transformation induced by this partitioning. If
∀(u,v)∈E: iv ∈ ⇒ ou ∈ , then τ is correct.

Then we have:

LEMMA 3. Let and be the partitioning resulting from our
analysis. Then we have: ∀ (u,v) ∈ E :iv ∈ ⇒ ou ∈ .

Together with the minimality of the cost function ensured by
the solution of the network problem, this implies the desired
optimality of the program transformation of our approach. In
fact, denoting the program transformation induced by the
partitioning resulting from our algorithm by SPRE, we have as
desired:

THEOREM 1 [Optimality] SPRE ∈ SPREopt.

7. FASTER ANALYSIS
Reducing the number of nodes in the network constructed for
Stone’s Problem has a major impact on performance. We show
how to do that below, while still obtaining the same optimal
result for the SPRE problem.

One simple approach is suggested by the network created for
the running example, as shown in Figure 6. There are several
dead-end nodes, such as those labelled i2 and o8 (the input
node for block B2 and the output node for B8 respectively).
These nodes and their adjacent edges may be safely deleted
from the network without affecting the min-cut solution. A
more sophisticated mapping from the control flow graph to the
network could avoid creating these nodes initially.

Alternatively, and this is the approach we chose to implement,
the number of nodes in the network can be significantly
reduced by changing the implication relation that reflects the
correctness constraints on program edges into an equivalence
relation. The equivalence relation amalgamates several labels.
Then several nodes in the original network can be represented
by one node in the reduced network. The solution remains
optimal and does not violate any correctness constraints, as
argued below.

First note that changing the implication relation to an
equivalence relation narrows the set of correct program
transformations. This is because an implication allows the
computation to be discarded along a program path, while the
equivalence relation does not. However, the cost functions
fulfil the following two (monotonicity-like) constraints:

LEMMA 4.

(4)

(5)

The first constraint states that requiring the computation at the
end of a node is more expensive than not requiring it. The
second one says that having the computation at the entry is
cheaper than not having it (i.e. a locally better solution for the
node in the original CFG may be permitted). Based on these
two constraints, we can construct two cases. The first case is a
portion of a network where there are several predecessor nodes
u1, ... , uk and one successor node v. The predecessor nodes do
not have any successor nodes other than v. A situation where

 while holds for some i would violate the
equivalence relation. That is, the equivalence relation would
force for all i. But this is not a problem because the
first constraint says we can discard the computation without
increasing the cost.

The second case can be constructed similarly. Assume we have
one predecessor node u and several successor nodes v1, ... , vk,
each of which has a unique predecessor – namely u. Assume
that u provides the computation but one of the successor nodes
does not need the computation on entry. According to the
second constraint, we know that keeping the computation at
the entry does not destroy the optimality.

Partitioning the control flow graph into these two cases is
straightforward. However not all edges can be classified into
either of these two cases and they are called critical edges,
which impose problems even for classical PRE algorithms.
Some formulations of PRE remove critical edges by inserting
new (empty) nodes into the CFG, however that is not necessary

Figure 6. Network for running example

(using edge capacities for speed optimization)

s

f

B1

B2 B3 B4

B5

B6

B7 B8

B9

6/∞
6/10

10/100

10/100

10/∞

0/∞

10/∞

2/∞2/∞ 0/∞

0/ ∞

0/∞10/∞

0/∞
6/∞

6/6 4/10

10/90

2/2

2/2

10/10

0/∞

Min-Cut

Ae Ae

Ae Ae

Ae Ae
Ae Ae

u∀ N∈ : X∀ Ae Ae{ , }∈ : cstu X Ae,() cstu X Ae,()≤

u∀ N∈ : X∀ Ae Ae{ , }∈ : cstu Ae X,() cstu Ae X,()≤

iv Ae∈ oui
Ae∈

oui
Ae∈

for our approach. For our formulation of SPRE, we simply
have to keep critical edges and their associated labels
unreduced.

8. EXPERIMENTS
We conducted experiments with the SpecInt95 benchmark
suite and the Gnu Compiler Collection to compare our
speculative approach with the classical approach.

Though the performance gains achieved by pure PRE are very
limited for modern computer hardware [2], we want to stress
that PRE techniques are applicable to other areas of
optimization such as load/store elimination, communication
optimization [11], etc. From these optimizations, significant
performance gains can be expected, leveraging the benefits of
a more advanced PRE technique.

We used the production run of the SpecInt95 benchmark suite
for profiling. We had several questions about it.

1. What is the problem size of SpecInt95?

2. What fraction of compile time does SPRE account for?

3. How does our new SPRE approach compare to the
classical PRE approach?

4. What percentage of nodes can be eliminated by applying
the techniques of Section 7?

The relevant parameters of the problem size are given in
Tables 4 and 5. The first table shows the quantitative numbers
(num) of how many control flow graphs (CFGs), number of
basic blocks (Blocks), number of edges (Edges) and number of
different expressions (Exprs) are in the SpecInt95 programs.
Table 5 shows the percentages of the CFGs, basic blocks and
edges that are actually executed during the test runs used for
gathering profile information. The numbers indicate that only a
fraction (about 40%) of the basic blocks in the programs are
executed in those test runs. This means that classical PRE
methods are likely to spend significant time optimizing large
portions of code which is hardly ever executed.

Table 6 shows the overall compile time (Total Time) and the
overhead for solving the SPRE networks. The overhead is, on
average, a little over 4% of total compilation time, which we
consider to be acceptable. Better algorithms [5, 10] than Ford-

Fulkerson could be used for max-flow and reduce the compile
time overhead.

In Tables 7 and 8, we compare our SPRE approach for three
different objective functions with the classical approach. Table
7 shows the figures for the numbers of static computations of
expressions in the program, while Table 8 shows dynamic
figures. The comparisons are given as ratios, comparing the
number of computations in the optimized program against the
number in the original program. The best ratios in each row are
shown in bold.

Table 4. Sizes of the SpecInt95 programs

Benchmark CFGs Blocks Edges Exprs

099.go 360 16013 21483 12657

124.m88ksim 221 7063 9433 3448

126.gcc 1554 88875 121881 39737

129.compress 20 332 409 218

130.li 167 2825 3573 1302

132.ijpeg 350 7533 9566 6059

134.perl 234 16041 22235 7257

147.vortex 834 26664 35692 13029

TOTALS 3740 165346 224272 83707

Table 5. Fractions of SpecInt95 programs executed

Benchmark % CFGs % Blocks % Edges

099.go 96.94 90.72 7.67

124.m88ksim 19.91 8.88 6.77

126.gcc 65.89 48.89 43.39

129.compress 75.00 77.11 73.11

130.li 64.07 43.65 36.61

132.ijpeg 38.00 29.09 24.65

134.perl 55.13 23.00 18.94

147.vortex 3.96 1.73 1.30

OVERALL 49.04 40.18 36.11

Table 6. Compile time with SPRE

Benchmark Total Time SPRE Time

099.go 43.41 secs 3.25%

124.m88ksim 38.11 secs 0.30%

126.gcc 253.14 secs 5.98%

129.compress 2.02 secs 0.79%

130.li 14.05 secs 0.38%

132.ijpeg 36.17 secs 0.46%

134.perl 66.24 secs 9.42%

147.vortex 106.41 secs 0.39%

TOTAL 559.55 secs 4.21%

Table 7. Static ratios (space)

 SPRE + Cost Model

Benchmark speed mix space PRE

099.go 2.72 0.87 0.85 0.92

124.m88ksim 2.17 0.91 0.91 0.99

126.gcc 23.04 0.96 0.92 0.98

129.compress 2.01 0.94 0.94 0.97

130.li 2.83 0.94 0.93 0.97

132.ijpeg 2.35 0.97 0.96 0.99

134.perl 56.51 0.96 0.90 0.99

147.vortex 1.15 0.91 0.91 1.04

Our three objective functions were: speed which optimizes the
dynamic number of computations, space which optimizes the
static number of computations, and mix which is similar to
speed but has a small weighting for space costs.

A ratio of, say, 0.88 in Table 7 indicates that the optimized
program contains only 88% of the number of computations as
compared to the original program and hence should require
less memory. The same ratio in Table 8 would indicate that the
optimized program executes only 88% of the computations
executed by the original program.

As can be seen in the two tables, the speed cost model does
produce the smallest numbers of dynamic computations but
can cause the size of the program to explode. (In a couple of
cases, that explosion is dramatic.) Conversely, the space cost
model significantly reduces the static number of computations
but can cause the number of dynamic computations to increase
much more. Only when both the space and time objectives are
taken into account with the mix cost model do we achieve
excellent results in both dimensions.

The dynamic results show that we eliminate up to 57% more
executed computations than with classical PRE. On average,
our SPRE approach is 34% better than classical PRE. Both the
mix and space cost models can dramatically reduce the static
number of computations in a program. This is important for
making good use of instruction cache buffers in modern
computers, as well as optimizing for embedded systems
architectures.

Table 9 shows the importance of reducing the number of
network nodes. The table shows the total number of edges and
nodes (num) and the percentage (c%) which remains after the
reduction techniques described in Section 7. About one third of
the original network nodes and 40% of the original edges
remain in the reduced network. The time spent in the min-cut
algorithm is more than halved by this reduction.

9. RELATED WORK

Classical approaches to PRE [12,13] are conservative and
cannot handle a case like that shown in Figure 1, where
speculative insertions of computations are needed to improve
the expected performance. Hailperin [8] went beyond the
classical PRE approach by introducing a cost function to
control the overall transformation. His approach blends
elements of PRE with constant propagation and strength
reduction in a single transformation. However, the impact on
code size cannot be controlled by this approach.

Speculative PRE was first introduced by Horspool and Ho [9]
who related the problem to network flow and proposed the use
of a min-cut algorithm. However their formulation of the
algorithm did not always discover optimal solutions. Bodik’s
Ph.D. thesis [1] covers speculative PRE and describes an
algorithm for its solution. A claim is made for the optimality of
the algorithm but no proof and no experimental results are
provided. Further work was performed by Gupta with Bodik,
Soffa and others [2,6,7]. Steffen [15] and Bodik, Gupta and
Soffa [2] replicated code to increase the amount of redundancy
which could be eliminated. However code size becomes a
major issue and has to be kept under control, with Steffen
using a bisimulation approach and Bodik et al. using profiling
information to guide the expansion process.

The closest work to that reported here is a recent paper by Cai
and Xue [3] which is the first to provide a provably optimal
solution to SPRE and include experimental results. However
we consider that our approach has some significant advantages
over theirs. First, their approach requires edge profiling,
whereas we use basic block counters which are easier to
implement. Second, our approach uses the s-t min-cut
algorithm to find the optimal solution whereas their approach
requires two dataflow analyses before getting to that point.
Third, and finally, their approach does not take space into
account. As our experiments demonstrate, a space explosion
can easily occur if space is not considered as a contributor to
the cost of a solution.

One paper which considers PRE and the effect on program size
was recently published by Rüthing, Knoop and Steffen [14]. It
allows a prioritization of speed, size, and register pressure, and
automatically generates a proven optimal program with respect
to the prioritization chosen. However, in contrast to the
approach here, it is conservative, i.e., it never impairs a
program path. Hence, speculation as required for our running
example is beyond its scope. A trade-off between, say, speed
and size is supported by providing either a code-size minimal
solution among the computationally best transformations, or,
alternatively, the computationally best solution among the
minimal code-size solutions. Handling the trade-off flexibly
using a linear combination of costs, as here, would be beyond
its scope.

Table 8. Dynamic ratios (time)

 SPRE + Cost Model

Benchmark speed mix space PRE

099.go 0.81 0.81 0.88 0.84

124.m88ksim 0.97 0.97 1.00 0.98

126.gcc 0.93 0.93 1.23 0.95

129.compress 0.90 0.90 0.98 0.92

130.li 0.96 0.96 1.11 0.97

132.ijpeg 0.98 0.98 1.03 0.99

134.perl 0.97 0.97 1.53 0.98

147.vortex 0.95 0.95 1.14 0.96

Table 9. Reduction in network size for SpecInt95

 Nodes Edges

Benchmark num c% num c%

099.go 1946724 31.43 2251804 38.71

124.m88ksim 383864 30.76 444013 37.21

126.gcc 20787804 29.21 24941666 38.28

129.compress 11372 34.57 12238 39.03

130.li 65852 32.70 72019 38.31

132.ijpeg 400708 33.55 442407 40.24

134.perl 9088578 28.17 11041344 36.38

147.vortex 2221096 29.90 2616346 38.35

OVERALL 34905998 29.19 41821837 37.81

10. CONCLUSIONS
We have shown how the SPRE problem can be generalized to
optimize for space or for time or for a linear combination of
them and solved optimally in an efficient manner.

We have not only shown that the optimal SPRE approach
yields significantly better solutions than the classical PRE
approach, but we have also shown that an optimal time
solution can be undesirable. This is a surprising result. Our
experiments show that optimizing for time without regard to
space can sometimes lead to an explosion in size. The use of a
cost function which combines both space and time is therefore
an essential ingredient of a SPRE algorithm and would be very
important when compiling for embedded systems.

11. ACKNOWLEDGMENTS
We would like to thank Erik Eckstein who had the original idea
for the local transformation of a basic block. Two authors
gratefully acknowledge funding received from the Natural
Science and Engineering Research Council of Canada.

12. REFERENCES
[1] R. Bodik. Path-Sensitive Value-Flow Optimizations of

Programs. Ph.D. thesis, University of Pittsburgh, 1999.

[2] R. Bodik, R. Gupta, and M. L. Soffa. Complete removal of
redundant computations. Proceedings of ACM Conference on
Programming Language Design and Implementation, vol. 33,
5, pages 1–14, New York, June 1998.

[3] Q. Cai and J. Xue. Optimal and efficient speculation-based
partial redundancy elimination. Proceedings of the 1st
IEEE/ACM International Symposium on Code Generation
and Optimization, pages 91–102, 2003.

[4] L. Ford and D. Fulkerson. Flows in Networks. Princeton
University Press, 1962.

[5] A. Goldberg and R. Tarjan. A new approach to the maximum
flow problem. Journal of the ACM, vol. 35, 4, pages 921–
940, 1988.

[6] R. Gupta, D. A. Berson, and J. Z. Fang. Path profile guided
partial redundancy elimination using speculation.

Proceedings of the 1998 International Conference on
Computer Languages, pages 230–239, 1998.

[7] R. Gupta and R. Bodik. Register pressure sensitive
redundancy elimination. Proceedings of International
Conference on Compiler Construction (CC99), LNCS, vol.
1175, pages 107–121, Springer-Verlag, March 1999.

[8] M. Hailperin. Cost-optimal code motion. ACM Transactions
on Programming Languages and Systems, vol. 20, 6, pages
1297–1322, Nov. 1998.

[9] R. N. Horspool and H.C. Ho. Partial redundancy elimination
driven by a cost-benefit analysis. Proceedings of 8th Israeli
Conference on Computer Systems and Software Engineering,
pages 111–118, June 1997.

[10] V. King, S. Rao, and R. Tarjan. A faster deterministic
maximum flow algorithm. Journal of Algorithms, vol. 17, 3,
pages 447–474, 1994.

[11] J. Knoop and E. Mehofer. Distribution assignment placement:
effective optimization of redistribution costs. IEEE
Transactions on Parallel and Distributed Systems, vol. 13, 6,
pages 628 – 647, 2002.

[12] J. Knoop, O. Rüthing, and B. Steffen. Optimal code motion:
theory and practice. ACM Transactions on Programming
Languages and Systems, vol. 16, 4, pages 1117–1155, July
1994.

[13] E. Morel and C. Renvoise. Global optimization by
suppression of partial redundancies. Communications of the
ACM, vol. 22, 2, pages 96–103, February 1979.

[14] O. Rüthing, J. Knoop, and B. Steffen. Sparse code motion.
Proceedings of 27th ACM Symposium on Principles of
Programming Languages, pages 170–183, 2000.

[15] B. Steffen. Property-oriented expansion. Proceedings of the
3rd Static Analysis Symposium (SAS’96), LNCS, vol. 1145,
pages 22–41, Springer-Verlag, 1996.

[16] H. Stone. Multiprocessor scheduling with the aid of network
flow algorithms. IEEE Transactions on Software
Engineering, vol. SE-3, 1, pages 85–93, January 1977.

