
Partial Redundancy Elimination with

Predication Techniques

Bernhard Scholz1, Eduard Mehofer2, and Nigel Horspool3

1 Institute of Computer Languages, Vienna University of Technology
Argentinierstr. 8/4, A-1040 Vienna, Austria

scholz@complang.tuwien.ac.at
2 Institute for Software Science, University of Vienna

Liechtensteinstr. 22, A-1090 Vienna, Austria
mehofer@par.univie.ac.at

3 Department of Computer Science, University of Victoria
P.O. Box 3055, Victoria, BC, Canada V8W 3P6

nigelh@uvic.ca

Abstract. Partial redundancy elimination (PRE) techniques play an
important role in optimizing compilers. Many optimizations, such as
elimination of redundant expressions, communication optimizations, and
load-reuse optimizations, employ PRE as an underlying technique for im-
proving the efficiency of a program.

Classical approaches are conservative and fail to exploit many opportu-
nities for optimization. Therefore, new PRE approaches have been de-
veloped that greatly increase the number of eliminated redundancies.
However, they either cause the code to explode in size or they cannot
handle statements with side-effects.

First, we describe a basic transformation for PRE that employs predica-
tion to achieve a complete removal of partial redundancies. The control
flow is not restructured, however, predication might cause performance
overhead. Second, a cost-analysis based on probabilistic data-flow anal-
ysis decides whether a PRE transformation is profitable and should be
applied. In contrast to other approaches our transformation is strictly
semantics preserving.

1 Introduction

Partial redundancy elimination (PRE) is an important optimization technique
in compilers for improving the efficiency of programs. The objective of PRE is
to avoid unnecessary re-computations of values at runtime. The PRE transfor-
mation replaces the computations by accesses to temporary variables, where the
temporary variables are initialized at suitable program points.

PRE is a key technology for compilers. In the literature, several optimiza-
tions can be found which employ PRE as the underlying technique. For example,
PRE has been successfully applied in compilers for high-performance systems.
Communication optimizations [KBC+99] and dynamic redistributions [KM02]



2 Bernhard Scholz, Eduard Mehofer, and Nigel Horspool

employ PRE as underlying optimization technique. PRE is also used for opti-
mizations in RISC compilers. An important example of a RISC optimization is
the load-reuse analysis [BGS99] that also uses PRE as underlying technique.

However, it has been observed that classical approaches [KRS94] are too
cautious and fail to take advantage of many opportunities for optimization. To
improve the effectiveness of PRE, new approaches were developed that use spec-
ulation [HH97,GBF98] and code duplication [Ste96]. Speculation uses profile
information and inserts additional computations (i.e. speculative computations)
in the program. In constrast, code duplication copies code and identifies infor-
mation carrying paths. However, both techniques raise concerns: (1) speculation
is not always applicable due to possible side-effects in expressions, and (2) code
duplication may cause an explosion in size.

In this paper we introduce a novel transformation for PRE that achieves
a complete removal of all partially redundant expressions without duplicating
code. Our PRE technique uses predication. A predicate controls whether the
computation in the temporary variable is valid or not. If the computation is
destroyed, the predicate is updated. Computations are conditionally executed.
If the temporary variable does not contain a valid value, re-computation is per-
formed and the predicate is updated again. The transformation is guided by
a cost-analysis based on probabilistic data-flow analysis [MS01,SM02] that de-
cides whether a computation needs to be predicated. The features of our PRE
approach are that (1) the control flow graph is not re-structured, (2) all partial
redundancies can be removed, and (3) our transformation is semantics preserv-
ing.

The paper is organized as follows. In Section 2 we motivate PRE with predi-
cation. In Section 3 the optimization is shown in detail. The basic transformation
is given and a cost analysis determines whether the transformation is beneficial
to the program performance or not. Section 4 surveys related work. Finally, a
summary is given in Section 5.

2 Motivation

Consider the example in Figure 1. In the first control flow graph in Figure 1(a),
the computation on the left-hand branch of the inner-loop is partially redundant.
The expression a/b is evaluated twice if the left-branch is executed in the first
iteration of the loop and if the left-branch is subsequently executed. A traditional
PRE algorithm [KRS94] is not able to eliminate this partial redundancy because
the statement b:=f(b) on the right-branch destroys the computation of the
expression.

Now consider the second graph in Figure 1(b), which shows a complete re-
moval of partial redundancies of the example in Figure 1(a) by employing code
duplication as introduced in [Ste96]. The transformation nearly duplicates all
nodes in the control flow graph. After applying the transformation two versions
of a node exist in the graph. One node represents the state where the computa-
tion is not available, while the other one represents the node where the computa-



Partial Redundancy Elimination with Predication Techniques 3

h:=a/b
s:=h

if C1

t:=h b:=f(b)

if C2

if C1

if C2

h:=a/b
t:=h

t f tf

t f
t

f

s:=a/b

if C1

t:=a/b b:=f(b)

if C2

f

t

t

f

(a) Example (b) Complete Removal

if C1

t:=h
b:=f(b)
h:=a/b

if C2

f

t

t

f

(c) Speculative PRE (d) PRE with Predication

h:=a/b
s:=h

if C1

m ? h:=a/b
m ? m:=false
t:=h

b:=f(b)
m:=true

if C2

f

t

t

f

h:=a/b
s:=h
m:=false

Fig. 1. Motivating Example

tion is available. Whenever the computation is destroyed, control is transferred
from a node where the computation is assumed to be available to a node where
it is not. Conversely, evaluation of the expression causes a control transfer to a
node where it is assumed to be available.

In the first node of the example in Figure 1(b), the expression a/b is computed
and stored in h. The loop on the left-hand side does not destroy the computation
of a/b and therefore can re-use the value of a/b inside the loop. Whenever the
computation is destroyed by b:=f(b), the loop on the right-hand side is entered.
The program stays in the loop on the right-hand side until a/b is re-computed.
Then, the computation is available in h again, and the loop on the left-hand side
is re-entered.

Not only does the control flow graph become irreducible4, but the number
of nodes has nearly doubled. In general, the code growth is exponential in the

4 For some optimizations irreducible control flow graphs have a negative impact.



4 Bernhard Scholz, Eduard Mehofer, and Nigel Horspool

number of expressions and, therefore, the approach is not viable in practice. To
alleviate this problem, Bodik et al. [BGS98] have introduced an approach that
limits code growth under the guidance of profile information. However, much
code would still be duplicated.

In Figure 1(c) an approach is illustrated that uses speculation [HH97,GBF98].
Let us assume that the left-branch is executed more often than the right one.
Expression a/b inside the loop can only be hoisted to the first node if the ex-
pression is re-computed after destroying the computation in the right-branch.
However, the expression a/b is not a safe computation since it can raise a “divi-
sion by zero” exception. For example, along a subsequent execution of the right
branch the computation of the expression a/b is inserted in the program which
does not exist in the original program. If, on some execution of the program
b happens to be zero, the error would occur. Hence, the insertion on the right
branch might destroy program semantics.

The intuition behind our predication approach is straightforward, as demon-
strated in Figure 1(d). Instead of duplicating code, our approach achieves com-
plete removal of partial redundancies by introducing a predicate. The predicate
reflects the unavailability of the expression in h. If the predicate holds, the ex-
pression a/b is not available in h and must be re-computed, otherwise the com-
putation in h can be re-used. In comparison to speculative PRE, our approach
is safe. No additional computations (other than predicate tests) are inserted in
the program.

For re-computing the value of a/b, we use predication as shown in the ex-
ample of Figure 1(d). Predication is a conditional execution of a statement de-
pending on the logical value of a predicate. For example, the assignment in
m ? h:=a/b on the left-branch is only executed if predicate m holds. After re-
computing the expression, the predicate is set to false with m ? m:=false;.
When a statement destroys the value of expression a/b, the predicate needs to
be invalidated as shown in the node on the right branch inside the loop.

The transformation is not free of cost and neither are all computations of
the expression replaced by predicated evaluations. E.g., in the first node we
do not transform the computation of a/b to a predicated one because there is
no preceding computation which can be exploited. In addition, the predicated
computation inside the loop will only make sense if the left branch is executed
more frequently than the right branch. Therefore, the transformation needs to
be guided by a cost analysis based on profile information that decides whether
a predicated computation would improve program performance or not.

3 PRE With Predication

In this section, we develop our predicated PRE approach. The optimization
consists of an analysis part which identifies profitable predication opportunities
followed by a subsequent transformation step. We start with a description of the
transformation first. Subsequently we develop a cost model and describe how



Partial Redundancy Elimination with Predication Techniques 5

the transformation is guided by it. Finally, we present the analysis required for
the cost model.

3.1 Basic Transformation

The key idea of predicated PRE is to save the value of an expression in a tem-
porary and to maintain a predicate which indicates whether the saved value is
still valid or not. Whenever the saved value is valid, subsequent computations
of the expression can be eliminated by loading the saved value.

The transformation is shown in Fig. 2. Basically every assignment u := exp
has to be replaced by the sequence hexp := exp; u := hexp where hexp denotes
a temporary which is associated with term exp and is used to hold the value
of the last computation of exp. Additionally, we have predicate mexp which is
associated with the term exp as well and which indicates whether temporary
hexp can be reused or the term exp has to be recomputed. The important point
is that hexp := exp is not executed each time. The term exp is evaluated only
if necessary, i.e. it is evaluated if the predicate mexp is true as indicated by the
predicated assignment mexp?hexp := exp, as shown in case 1 of Fig. 2. Next mexp

is set to false to suppress unnecessary recomputations. However, if a variable
occurring in exp is modified, the value held in hexp cannot be reused any more,
and the term exp would need to be recomputed. This situation is described in
case 2 of Fig. 2. There it is assumed that variable v occurs in term exp. Thus
assigning a new value to v requires a recomputation of term exp, and this is
enforced by setting the predicate mexp to true.

Case 1: Compute Case 2: Destroy

u := exp; ⇒



mexp ? hexp := exp;
mexp ? mexp := false;
u := hexp;

v := . . . ⇒
{

v := . . .
mexp := true;

Fig. 2. Basic Transformation

It is important to stress that contrary to other PRE approaches our transfor-
mation is strictly semantic preserving, i.e. we do not introduce new computations
on any path which were not present in the original code. If an evaluation of an ex-
pression raises an exception, that exception would be raised at exactly the same
point in the computation. However we add additional assignments which have
to be executed and may degrade a program’s performance. Hence, an analysis
of the effect on performance is inevitable.

3.2 Cost Model

For each appearance of a term exp in the program we must decide whether it is
profitable to perform the transformation or not. A transformation for term exp
at some program point pays off if

OrigComp > PredicatedComp (1)



6 Bernhard Scholz, Eduard Mehofer, and Nigel Horspool

where OrigComp denotes the computational costs of exp in the original code
and PredicatedComp denotes the computational costs of exp in the transformed
code. Obviously, PredicatedComp is dominated by the number of times the value
stored in the temporary variable can be reused compared to the number of times
the term has to be recomputed. If p denotes the probability that the stored value
of exp is valid at some program point, then PredicatedComp is given by

PredicatedComp = p × Reuse + (1 − p) × Recompute (2)

with Reuse denoting the costs if mexp is set to false and the stored value can be
reused, and with Recompute denoting the costs associated with a recomputation.
By combining Equation (1) and (2) we obtain

p >
Recompute − OrigComp

Recompute − Reuse
(3)

Equation (3) specifies a lower bound for probability p. The execution times
of Recompute, OrigComp, and Reuse can be measured or predicted and the
value of p determined. Whenever pn > p holds at some program point n, it is
profitable to apply the transformation. Otherwise, if pn ≤ p, the performance of
the program may be degraded.

Let us consider again our motivating example with a program run π which
enters the loop and 2 times takes the left branch, 1 time the right branch,
and finally 6 times the left branch and terminating the loop. Let us further
assume that the execution times for term a/b are given as follows: Recompute =
110ns, OrigComp = 100ns, and Reuse = 10ns. Thus we get p > (110ns −
100ns)/(110ns − 10ns) = 1/10. In our motivating example, the term a/b
occurs in nodes 1 and 3. Since pn denotes the probability that term a/b is valid
at program point n, pn can be calculated easily by the ratio:

pn =
nr. of times a/b is available at n

nr. of times n occurs in π
(4)

Node 1 is executed once and term a/b is never available, thus we get p1 =
0/1 = 0. Since p1 is not greater than p, a decision to perform the transformation
is negative. On the other hand, node 3 is executed 8 times and term a/b is
available and reused 7 times which results in p3 = 7/8. Now p3 > p holds and
the transformation should therefore be performed for node 3.

Calculation of the probabilities pn is crucial to our cost model. An important
observation is that the definition of probability pn in Equation (4) is identical
to the definition of probabilistic partially available expressions.

3.3 Probabilistic Partially Available Expression Analysis

Classical data flow analysis determines whether a data flow fact may hold or
does not hold at some program point. Probabilistic data flow systems compute
a range, i.e. a probability, with which a dataflow fact will hold at some program



Partial Redundancy Elimination with Predication Techniques 7

point [Ram96,MS01]. In probabilistic dataflow systems, control flow graphs an-
notated with edge probabilities are employed to compute the probabilities of
dataflow facts. Usually, edge probabilities are determined by means of profile
runs based on representative input data sets. These probabilities denote heav-
ily and rarely executed branches and are used to weight dataflow facts when
propagating them through the control flow graph.

An expression e is called partially available at a program point n, if there is
at least one path from the entry node to n containing a computation of e and
with no subsequent assignments to any variable used in e on that path. Such
a path contains an unnecessary recomputation of e which can be avoided by
partial redundancy elimination techniques.

Central to our cost model is the definition of pn. Combining probabilistic
data flow analysis with partial availability, we arrive at a suitable definition of
pn: pn represents the probability that an expression e is available at program
point n. If n is reached N times during a program’s execution, and e is available
on A of those N occasions, then pn is estimated as A/N .

Our probabilistic data flow framework [MS01] takes as input profiles with
edge probabilities of the control flow graphs and the dataflow equations for the
dataflow problem. The dataflow equations for partial availability are defined
in the usual way, and are shown in Figure 3. Profiling information is easily
obtained with our GNU gcc environment by specifying appropriate compiler
options. Thus we can obtain estimates for pn values with minimal programming
effort and with little extra compilation time (detailed experiments with SPEC95
have been published in [MS01]).

N-PAVAIL(n) =




false if n = start node∨
m∈pred(n)

X-PAVAIL(m) otherwise

X-PAVAIL(n) = LocAvail(n) ∨ N-PAVAIL(n) ∧ LocBlock(n)

where

LocAvailexp(n) = There is an expression exp which is available at the end of n.
LocBlockexp(n) = The expression exp is blocked by some instruction of n.

Fig. 3. Partial Availability Analysis

3.4 Refinements of the Basic Transformation

First, the predicate can be omitted from assignments when the expression is
known not to be available. More formally, if exp is not partially available at pro-
gram point n, but on at least one path starting from n there exists a (partially)
redundant occurrence of exp, the predicates in front of the assignments can be
omitted (cf. Fig. 2, case 1). This simplification has been applied for assignment
s := a/b at node 1 in our motivating example.



8 Bernhard Scholz, Eduard Mehofer, and Nigel Horspool

Second, maintenance of the predicate can be omitted if the predicate is not
used. Assume that variable v occurs in term exp and variable v is assigned a new
value at program point n. If there is no subsequent use of that new value of v in
a predicated assignment of exp on any path emanating from n, the assignment
invalidating the reuse of the temporary hexp can be omitted.

4 Related Work

Classical partial redundancy elimination techniques [KRS94] cannot always re-
move redundant expressions since static analysis approaches are too conserva-
tive. In [BGS98] it is reported that the number of dynamically eliminated ex-
pressions can be doubled by employing more sophisticated approaches. However,
although a simple algorithm [Ste96] can achieve a complete removal of all par-
tial redundancies, the approach causes code growth which is exponential in the
number of expressions and is therefore not viable in practice. Speculative ap-
proaches [HH97,GBF98] do not restructure the control flow graph and insert
additional computations into the control flow graph. They achieve nearly the
same optimization results as complete removal. However, a major disadvantage
of speculative PRE is that computations with side-effects cannot be handled.
In [BGS98] a combination of speculative and code duplication is given. To limit
code growth and to select the appropriate PRE technique, profile information is
taken into account.

Our approach has the potential to remove all redundancies, though removal
is performed only when it would be profitable. Predicates indicate whether the
computation is available in temporaries or not. The approach is similar to mem-
oization techniques for functional languages. However, no lookups in a memoiza-
tion table are required since only the last computation of an expression is stored
in a temporary and a predicate controls whether the computation is valid or not.

With our approach, a probabilistic data flow analysis is required to determine
whether a transformation is profitable or not. Ramalingam [Ram96] pioneered
the field of probabilistic data flow analysis which computes the probability of
a dataflow fact. The approach yields an approximate solution which can differ
from the accurate solution. In [MS01], that approach was improved by utiliz-
ing execution history for estimating the probabilities of the dataflow facts. For
calculating the deviations of the probabilistic approaches from the accurate so-
lution, the notion of an abstract run [MS00] was developed. An abstract run
accurately calculates the frequencies; however the computational complexity is
proportional to the program path length and is thus not feasible in practice. To
compute an accurate solution in acceptable time, a novel approach [SM02] based
on whole program paths was developed.

5 Summary

We have presented a partial redundancy elimination approach based on proba-
bilistic data flow analysis and predication. Our basic transformation achieves a



Partial Redundancy Elimination with Predication Techniques 9

complete removal of all redundancies. Contrary to other approaches, the control
flow graph is not restructured and the optimization is strictly semantics preserv-
ing, i.e. computations with possible side effects are handled correctly. However,
predication can cause additional costs. Hence, cost-analysis controls the PRE
transformation.

References

[BGS98] Rastislav Bod́ık, Rajiv Gupta, and Mary Lou Soffa, Complete removal of
redundant expressions, Proceedings of the ACM SIGPLAN’98 Conference
on Programming Language Design and Implementation (PLDI) (Montreal,
Canada), 17–19 June 1998, pp. 1–14.

[BGS99] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa, Load-reuse analysis:
Design and evaluation, ACM SIGPLAN Notices 34 (1999), no. 5, 64–76.

[GBF98] Rajiv Gupta, David A. Berson, and Jesse Z. Fang, Path profile guided partial
redundancy elimination using speculation, Proceedings of the 1998 Interna-
tional Conference on Computer Languages, IEEE Computer Society Press,
1998, pp. 230–239.

[HH97] R. Nigel Horspool and H. C. Ho, Partial redundancy elimination driven by a
cost-benefit analysis, Proceedings of 8th Israeli Conference on Computer Sys-
tems and Software Engineering (ICSSE’97) (Herzliya, Israel), IEEE Com-
puter Society, June 1997, pp. 111–118.

[KBC+99] M. Kandemir, P. Banerjee, A. Choudhary, J. Ramanujam, and N. Shenoy, A
global communication optimization technique based on data-flow analysis and
linear algebra, ACM Transactions on Programming Languages and Systems
21 (1999), no. 6, 1251–1297.

[KM02] J. Knoop and E. Mehofer, Distribution assignment placement: Effective op-
timization of redistribution costs, IEEE Transactions on Parallel and Dis-
tributed Systems 13 (2002), no. 6, 628 – 647.

[KRS94] Jens Knoop, Oliver Rüthing, and Bernhard Steffen, Optimal code motion:
Theory and practice, ACM Transactions on Programming Languages and
Systems 16 (1994), no. 4, 1117–1155.

[MS00] E. Mehofer and B. Scholz, Probabilistic data flow system with two-edge pro-
filing. Workshop on Dynamic and Adaptive Compilation and Optimization
(Dynamo’00), ACM SIGPLAN Notices 35 (2000), no. 7, 65 – 72.

[MS01] , A novel probabilistic data flow framework, International Confer-
ence on Compiler Construction (CC 2001) (Genova, Italy), Lecture Notes
in Computer Science (LNCS), Vol. 2027, Springer, April 2001, pp. 37 – 51.

[Ram96] G. Ramalingam, Data flow frequency analysis, Proc. of the ACM SIG-
PLAN ’96 Conference on Programming Language Design and Implemen-
tation (PLDI’96) (Philadephia, Pennsylvania), May 1996, pp. 267–277.

[SM02] B. Scholz and E. Mehofer, Dataflow frequency analysis based on whole pro-
gram paths, Proceedings of the IEEE International Conference on Parallel
Architectures and Compilation Techniques (PACT-2002) (Charlottesville,
VA), September 2002.

[Ste96] Bernhard Steffen, Property oriented expansion, Proc. Int. Static Analysis
Symposium (SAS’96), Aachen (Germany) (Heidelberg, Germany), Lecture
Notes in Computer Science (LNCS), vol. 1145, Springer-Verlag, September
1996, pp. 22–41.


