
Transformation-based Synthesis of Networks of Toffoli/Fredkin Gates

Gerhard W. Dueck, Dmitri Maslov D. Michael Miller

Faculty of Computer Science Department of Computer Science

University of New Brunswick University of Victoria

Fredericton, N.B. E3B 5A3 Victoria, BC, V8W 3P6

gdueck@unb.ca, dmaslov@unb.ca mmiller@csr.uvic.ca

Abstract

Reversible logic has attracted significant attention
in recent years. It has applications in low power
CMOS, quantum computing, nanotechnology, and op-
tical computing. Traditional gates such as AND, OR,
and EXOR are not reversible. In fact NOT is the
only reversible gate from the traditional set of gates.
Several reversible gates have been proposed. Among
them are the controlled NOT (also known as the Feyn-
man gate), the Toffoli gate, and the Fredkin gate. An
n-input Toffoli gate has n-1 control lines which pass
through the gate unaltered and a target line on which
the value is inverted if all the control lines have value
’1’. An n-input Fredkin gate has n-2 control lines
which pass through the gate unaltered and two target
lines on which the values are swapped if all the con-
trol lines have value ’1’. A NOT gate is the special
case of a Toffoli gate with no control inputs. Like-
wise, a SWAP gate is the special case of a Fredkin gate
with no control inputs. In this paper, we will review
a transformation-based synthesis procedure targeted to
Toffoli gates and show how it can be extended to allow
Fredkin gates. This extension results in circuits with
fewer gates.

The synthesis of reversible logic differs signifi-
cantly from traditional irreversible logic synthesis ap-
proaches. Fan-outs and loops are not permitted due to
the target technology. Outputs from one gate are used
as inputs to the next gate. This results in a high degree
of interdependence among gates. Our algorithm first
finds an initial circuit with no backtracking and mini-
mal look-ahead. We exploit reversibility directly in our
synthesis approach. This method always finds a solu-
tion. Next we apply a set of template transforms that
reduce the size of the circuit. We synthesize all three
input, three output reversible functions and compare
our results to those obtained previously.
Keywords: Reversible Logic, Synthesis, Toffoli

Gates, Fredkin Gates, Templates.

CCECE 2003 - CCGEI 2003, Montreal, May/mai 2003

0-7803-7781-8/03/$17.00 c©2003 IEEE - 001 -

1 Definitions

We consider cascades of generalized Toffoli and gen-
eralized Fredkin gates as defined below.

Definition 1. For the set of domain variables
{x1, x2, ..., xn} a generalized Toffoli gate has the
form TOF (C;T), where C = {xi1 , xi2 , ..., xik

},
T = {xj} and C ∩ T = ∅. Such a
gate maps the Boolean pattern (x0

1, x
0
2, ..., x

0
n) to

(x0
1, x

0
2, ..., x

0
j−1, x

0
j⊕x

0
i1
x0

i2
...x0

ik
, x0

j+1, ..., x
0
n). The set

C which controls the change of the j-th bit is called
the set of control lines and T is called the target.
I

Several gates of this family are well-known and
widely studied. TOF (∅;x1), or simply TOF (x1) is the
special case where there are no control inputs, so x1

is always inverted, i.e. it is a NOT gate. TOF (x1;x2)
has been termed the Feynman [2] or controlled-NOT
gate (CNOT). TOF (x1, x2;x3) is often referred to
simply as a Toffoli gate [7].

Definition 2. For the set of domain vari-
ables {x1, x2, ..., xn} the generalized Fred-

kin gate has the form FRE(C;T), where
C = {xi1 , xi2 , ..., xik

}, T = {xj , xl} and C ∩ T = ∅
and maps the Boolean pattern (x0

1, x
0
2, ..., x

0
n) to

{x0
1, x

0
2, ..., x

0
j−1, x

0
l , x

0
j+1, ..., x

0
l−1, x

0
j , x

0
l+1, ..., x

0
n) iff

xi1xi2 ...xik
= 1 otherwise all bits are left unchanged.

In other words, the generalized Fredkin gate inter-
changes bits xj and xl iff corresponding product
equals 1. I

The SWAP gate FRE(∅;x1, x2) is the case of a
Fredkin family gate with no controls. Although in
some technologies SWAPs are done at no cost, we as-
sume that there is a cost associated with such a gate.
Another example of a gate from the Fredkin family, is

the original Fredkin gate FRE(x1;x2, x3) [3]. It has
a single control.

2 Optimal Synthesis

Given a reversible function, we want to find a
network realization composed of Toffoli and Fredkin
gates. Synthesis methods for Toffoli gate networks
have been proposed in [1], [4], [5], [6]. Markov et
al. [6] found all optimal networks for three input re-
versible functions by matching all the minimal Toffoli
gate networks (networks made of gates NOT, CNOT,
Toffoli) with all reversible functions of three variables.
They also considered minimal networks for three in-
put reversible functions with NOT, CNOT, Toffoli and
SWAP gates. The SWAP is part of a different family,
so it is interesting to expand the results of optimal
synthesis to include Fredkin gates.

Size NCT NCTS NCTSF

0 1 1 1

1 12 15 18

2 102 134 184

3 625 844 1318

4 2780 3752 6474

5 8921 11194 17695

6 17049 17531 14134

7 10253 6817 496

8 577 32 0

WA 5.867 5.629 5.134

Table 1: Number of reversible functions using a spec-
ified number of gates for n = 3.

Table 1 shows the number of three input reversible
functions requiring the specified number of gates for
different gate type sets. The values in NCT (networks
with NOT, CNOT, and Toffoli gates) and NCTS
(NTC plus SWAP gates) are taken from Markov et al..
Column CNTSF adds Fredkin gates and gives the re-
sults produced by a program we wrote. The weighted
average (shown in the bottom row labeled WA) gives
the average cost of a three input function. Clearly, it is
beneficial to include Fredkin gates, since the weighted
average drops significantly, and no function requires
more than 7 gates.

3 Regular Synthesis

In earlier work [5], we proposed a synthesis method
that produces networks of generalized Toffoli gates for
any given reversible specification. Generalized Fredkin
gates can easily be incorporated into the algorithm.

For the algorithm in [5], it was easy to construct
the worst case scenario function. In particular, for

- 002 -

n = 3 such a function was constructed (it is unique)
and called 3 17.pla. The cost of realizing this function
with the naive algorithm from [5] is 17 gates.

Example 1. Applying the basic method for the
3 17.pla function shown in Table 2.

• Step 0. The output pattern corresponding to the
input pattern (0, 0, 0) is (1, 1, 1). In order to bring
it to the form (0, 0, 0) apply 3 NOT’s: TOF (; a),
TOF (; b) and TOF (; c). Update the table (Table
2, S1) to show the new output pattern.

• Step 1. For input pattern (0, 0, 1) we have the
output pattern (1, 1, 0). In order to match the
last two bits to the input, swap bits b and c by
FRE(; b, c) and then use TOF (c; a) to bring the
“swapped” pattern (1, 0, 1) to the form (0, 0, 1).
Neither of the gates used changes anything of the
order less than (0, 0, 1). Also note, that this is
not a unique way of changing the output pattern
to match the input pattern even for the smallest
set of controls. FRE(; a, c), TOF (c; b) would do
the same job.

• Step 2. The next input pattern, (0, 1, 0) does
not match the correspondent output pattern,
(1, 1, 1) (Table 2, S2). Apply the gates TOF (b; c),
TOF (b; a) to make the match.

• Step 3. Apply TOF (a; c) and FRE(c; a, b) to
match the output pattern (1, 0, 0) of Table 2, S2
to the desired input pattern (0, 1, 1).

• Step 4. Use TOF (a; c) and TOF (a; b) to bring
(1, 1, 1) (Table 2, S4) to the form (1, 0, 0).

• Step 5. Finally, use FRE(a; b, c) to transform
(1, 1, 0) from Table 2, S5 to (1, 0, 1).

• Steps 6,7 are empty since the output completely
matches the input (Table 2, S6).

In Out S1 S2 S3 S4 S5 S6

000 111 000 000 000 000 000 000

001 001 110 001 001 001 001 001

010 100 011 111 010 010 010 010

011 011 100 100 100 011 011 011

100 000 111 011 110 111 100 100

101 010 101 110 011 101 110 101

110 110 001 010 111 110 101 110

111 101 010 101 101 100 111 111

Table 2: Basic approach synthesis.

The resulting circuit has 12 gates as opposed to 17
for the naive approach with Toffoli gates only. The
circuit is illustrated in Fig. 1(a).

a
b
c

a
b
c

(a)

(b)

Figure 1: Circuits.

Example 2. Use the bidirectional algorithm to build a
circuit for 3 17.pla.

• Step 0. We can match the output pattern
(1, 1, 1) with the input pattern (0, 0, 0) by as-
signing TOF (; a) to the beginning of the cas-
cade. This transformation interchanges the out-
put patterns in front of input patterns (0, α, β)
and (1, α, β) resulting in the output shown in Ta-
ble 3, S1.

• Step 1. To change (0, 1, 0) to the form (0, 0, 1)
swap the last two bits (use FRE(; b, c)) at the
end of the cascade.

• Step 2. To change (1, 0, 1) in Table 3, S2 to
the form (0, 1, 0) one gate is not enough. A few
choices are possible at this step. Apply gates
FRE(; a, b) and TOF (b; c), both at the end of
the cascade.

• Step 3. The two gates FRE(b; a, c) assigned at
the beginning of the network and TOF (b, c; a)
at the end are doing absolutely the same change
and both bring target pattern (1, 1, 1) of Table
3, S3 to the desired form (0, 1, 1). We choose
FRE(b; a, c).

• Step 4. Pattern (1, 1, 0) can be brought to the
form (1, 0, 0) by using the gate TOF (a; b) at the
end of the cascade.

• Step 5. Gate FRE(a; b, c) assigned to the end of
the cascade or to the beginning of cascade makes
the same change - it brings (1, 1, 0) to the desired
form (1, 0, 1). Since this is the last step (column
S6 matches the input column exactly), the gate
chosen can be viewed as either arising from the
input or the output side since for any circuit the
last element of the part built from its beginning is
the first element of the cascade part built from its

In Out S1 S2 S3 S4 S5 S6

000 111 000 000 000 000 000 000

001 001 010 001 001 001 001 001

010 100 110 101 010 010 010 010

011 011 101 110 111 011 011 011

100 000 111 111 110 110 100 100

101 010 001 010 100 100 110 101

110 110 100 100 011 111 101 110

111 101 011 011 101 101 111 111

Table 3: Bidirectional synthesis.

end. In other words, the two parts of the cascade
meet at gate FRE(a; b, c).

• Steps 6,7 are empty.

The cascade consists of 7 gates, and the circuit is
shown in Figure 1(b).

A template simplification tool was introduced in [5],
since the network created by the algorithm is usually
not optimal. The idea of a template is to replace a
sequence of gates with an equivalent shorter sequence.
Further, we extend the template simplification tool to
include Fredkin gates.

The template definition is taken from [?]. Let
a size m template be a sequence of m gates
(G0 G1... Gm−1) which realizes the identity function.
Any template of size m must be independent of tem-
plates of smaller size, i.e. for a given template size
m no application of any set of templates of smaller
size can decrease the number of its elements. Appli-
cation of the template G0 G1... Gm−1 is one of the
following two operations:

1. Forward application. A piece of network
that matches the sequence of gates Gi

G(i+1) mod m... G(i+k−1) mod m of the template
G0 G1... Gm−1 exactly, is replaced with the se-
quence G(i−1) mod m G(i−2) mod m... G(i+k) mod m

without changing the network’s output, where
k ∈ N, k ≥ m

2 .

2. Backward application. A piece of net-
work that matches the sequence of gates
Gi G(i−1) mod m... G(i−k+1) mod m ex-
actly, is replaced with the sequence
G(i+1) mod m G(i+2) mod m ... G(i−k) mod m

without changing the network output, where
k ∈ N, k ≥ m

2 .

- 003 -

The introduction of Fredkin gates adds several new
templates to those considered in [?] and [5]. The new
templates are shown in Figure 2. In addition to these

Figure 2: New templates for 3 input functions.

templates we use the following two rules. Duplica-

tion deletion rule: if at any time two adjacent gates
are equal, they can be deleted. Moving rule: two
gates can be interchanged if controls of one do not in-
tersect with the target of the other or, if one of the
gates is a Fredkin gate, when both of the Fredkin gate
targets are in the controls of the other gate.

In order to check whether we have all the templates
for n = 3 of size 5 and less, we created a program that
finds all the circuits that realize identity function of
size 5 and less and try to apply the templates that
are listed. The program finds occurrence of one of the
templates we show for each case, so we conclude that
we have found all templates of size 5 and less.

4 Experimental Results

We developed a program that runs a version of the
algorithm (bidirectional with input reduction and per-
mutations) and uses the template tool. At this point,
our program uses the 8 four gate templates shown in
Figure 2. The size 5 template is not used by our pro-
gram and we believe that when we incorporate it, there
will be a further reduction in the network size. An-
other reduction that can be easily done is based on
the fact that if the two functions, f and f−1 have net-
works of a different size, one can create a network for
f by applying the gates for f−1 in reverse order.

Even though several simplification operations have
not been realized yet, the results from our program
are surprisingly close to the optimal (for n = 3).

To summarize the results, we created a Table 4.
Compare our results (column NCTSF∗) to the opti-
mal (column NCTSF) and our previous results for the
model gates NOT, CNOT, Toffoli and SWAP (column
NCTS∗) [5].

Using Fredkin gates in conjunction with our syn-
thesis method is beneficial, since the corresponding
weighted average for the regular synthesis with NOT,
CNOT, Toffoli, SWAP, and Fredkin is better than

- 004 -

Size NCT NCTS NCTS∗ NCTSF NCTSF∗

0 1 1 1 1 1

1 12 15 15 18 18

2 102 134 130 184 175

3 625 844 767 1318 1105

4 2780 3752 2981 6474 4437

5 8921 11194 7518 17695 10595

6 17049 17531 12076 14134 13606

7 10253 6817 11199 496 8419

8 577 32 4726 0 1877

9 0 0 792 0 86

10 0 0 110 0 1

11 0 0 5 0 0

WA: 5.867 5.629 6.176 5.134 5.724

Table 4: Results

the weighted average of optimal synthesis for NOT,
CNOT, and Toffoli (column NCT).

Acknowledgement

This work was supported in part by research grants
from the Natural Sciences and Engineering Research
Council of Canada. This work was completed while
the last author was on sabbatical at the University of
New Brunswick.

References

[1] G. W. Dueck and D. Maslov. Reversible function syn-
thesis with minimum garbage outputs. In 6th Interna-
tional Symposium on Representations and Methodol-
ogy of Future Computing Technologies, pages 154–161,
March 2003.

[2] R. Feynman. Quantum mechanical computers. Optic
News, 11:11–20, 1985.

[3] E. Fredkin and T. Toffoli. Conservative logic. Inter-
national Journal of Theoretical Physics, 21:219–253,
1982.

[4] D. Maslov and G. W. Dueck. Garbage in reversible
design of multiple output functions. In 6th Interna-
tional Symposium on Representations and Methodol-
ogy of Future Computing Technologies, pages 162–170,
March 2003.

[5] D. M. Miller, D. Maslov, and G. W. Dueck. A transfor-
mation based algorithm for reversible logic synthesis.
In Proceedings of the Design Automation Conference,
pages 318–323, June 2003.

[6] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P.
Hayes. Reversible logic circuit synthesis. In Interna-
tional Conference on Computer Aided Design, pages
125–132, San Jose, California, USA, Nov 10-14 2002.

[7] T. Toffoli. Reversible computing. Tech memo
MIT/LCS/TM-151, MIT Lab for Comp. Sci, 1980.

