
“MVLSC” — “d128” — 2007/6/25 — 16:40 — page 1 — #1

J. of Mult.-Valued Logic & Soft Computing, Vol. 13, pp. 1–16 ©2007 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group

QMDD Minimization using Sifting for
Variable Reordering

D. Michael Miller
1
, David Y. Feinstein

2
and Mitchell A. Thornton

2

1Department of Computer Science, University of Victoria, Canada
E-mail: mmiller@cs.uvic.ca

2Department of Computer Science and Engineering, Southern Methodist University, USA
E-mail: dfeinste, mitch@engr.smu.edu

Received: April 30, 2007.

This paper considers variable reordering for quantum multiple-valued
decision diagrams (QMDDs) used to represent the matrices describing
reversible/quantum gates and circuits. An efficient method for adjacent
variable interchange is presented and this method is employed to imple-
ment a vertex reduction procedure for QMDDs using sifting. Experimental
results are presented showing the effectiveness of the proposed technique.

Keywords: Quantum Multiple-valued Decision Diagrams, Quantum Logic, Reversible
Logic, Sifting

1 INTRODUCTION

A reversible/quantum circuit is a cascade of reversible/quantum gates. The
behaviour of each gate can be described as a matrix and the function performed
by the circuit is described by the product of the individual gate matrices. How-
ever, the matrix for an n-line reversible/quantum gate/circuit in r-valued logic
has dimension rn × rn so the computation using standard matrix techniques
quickly becomes impractical.

The quantum multiple-valued decision diagram (QMDD) data structure
presented in [10,11] was specifically designed to address this problem. A
QMDD represents the matrix corresponding to a gate or circuit as a directed
acyclic graph. Efficient methods for constructing QMDDs for individual gates
and for performing matrix multiplication directly with QMDDs are presented
in [10].

1

“MVLSC” — “d128” — 2007/6/25 — 16:40 — page 2 — #2

2 D. Michael Miller et al.

As is the case for other decision diagram representations such as the
ordered binary decision diagram [2], the number of vertices in a QMDD
depends on the variable ordering selected. This paper addresses variable order-
ing for QMDDs [9]. We present a method for adjacent variable interchange
and describe a modification to the QMDD structure required to make this a
local operation for all QMDDs. We then present a heuristic vertex reduction
algorithm for QMDDs based on Rudell’s binary decision diagram “sifting”
technique [13].

Section 2 presents the basic concepts of binary and MVL reversible and
quantum gates and circuits with particular emphasis on the matrix representa-
tion. Section 3 addresses adjacent variable interchange for QMDDs. Section 4
shows how sifting can be applied to QMDDs. Experimental results are pre-
sented in section 5 and the paper concludes with observations and suggestions
for further research in Section 6.

2 PRELIMINARIES

2.1 Reversible logic and quantum circuits
We present the basic concepts of reversible and quantum circuits neces-
sary for this paper. More extensive background is available in the literature
(e.g. [5,12]).

Definition 1. A gate/circuit is logically reversible if it maps each input pattern
to a unique output pattern.

Binary reversible gates and circuits have garnered considerable interest due
to Landauer’s principle which states that the erasure of information dissipates
energy. Bennett [1] showed that for a binary circuit to not consume energy, it
must be composed of reversible gates. The concept of reversibility has been
extended to MVL circuits [8]. Quantum logic gates and circuits are inherently
both logically and physically reversible [12]. In general, the behaviour of
reversible and quantum gates and circuits can be described by complex-valued
matrices and are modeled as bijective functions.

Figure 1 shows a binary reversible circuit with 3 lines and 5 gates. The
symbol ⊕ denotes the NOT operation. For each gate, the NOT operates on
the target line if every control line (lines with a black circle) has the value 1.
Otherwise the target line is unchanged. Control and unconnected lines pass
through the gate unchanged. A gate with no controls is a NOT gate. One with
a single control is termed a controlled-NOT and those with more than one
control are Toffoli gates [12].

Multiple-valued reversible circuits have been considered in [8]. The struc-
ture illustrated in Fig. 1 is generalized so that the target line is operated on by
a negation or cycle operation depending on the values of the control lines. The
non-zero values indicated in the control line connections specify the nonzero

“MVLSC” — “d128” — 2007/6/25 — 16:40 — page 3 — #3

QMDD Minimization using Sifting for Variable Reordering 3

a

b

c

a+

b+

c+

FIGURE 1
A binary reversible circuit

x
0

x
1

x
2

1

2

C1 C1

2

2

C1

2

2

2

C2

2

2

C2

2

1

2

C2

1

2

C2

2

2

C1

2

C2

1

2

2

x
3

C1

2 1

C2

2

1

C1

2

1

1

C2

2

1

C2

1

C2

1

2

C2 x’
0

x’
1

x’
2

x’
3

FIGURE 2
A ternary reversible full adder

value required in order to trigger the operation. Figure 2 shows a reversible
circuit from [8] that operates as described and realizes a ternary full adder.

Quantum logic gates [12] operate in a similar fashion with the values on des-
ignated control lines determining if a particular quantum logic transformation
is to be applied to the target line.

2.2 Matrix representation of reversible/quantum gates and circuits
The operations performed on the target line for the gates considered in this
paper are given by the r×r matrices in Table 1. NOT is the normal binary com-
plement shown as ⊕ in Fig. 1. V and V + are quantum operations sometimes
referred to as “square root of NOT” gates since V × V = V + × V + = NOT .
Note that V is unitary, as are all operation matrices for quantum gates, and

“MVLSC” — “d128” — 2007/6/25 — 16:40 — page 4 — #4

4 D. Michael Miller et al.

Binary (r = 2) Matrices Ternary (r = 3) Matrices

NOT

(
0 1
1 0

)
NEG

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠

V

(1+i
2

1−i
2

1−i
2

1+i
2

)
C1

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠

V +
(1−i

2
1+i

2
1+i

2
1−i

2

)
C2

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠

TABLE 1
Gate Operation Matrices

c b a c+ b+ a+

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

TABLE 2
Representation of the Toffoli Gate T (a; b, c) in a 3-line Circuit

V + is the conjugate transpose of V , hence V + = V −1. NEG is ternary
negation, and C1 and C2 are the two ternary unary cycle operations [8].

The matrices in Table 1 define the operation on the target line. The matrix
definition for an r-valued gate in an n-line reversible or quantum circuit has
dimension rn × rn taking into account the operation on the target line and the
control and unconnected lines. For example, the leftmost gate in Fig. 1 has
the truth table and matrix specifications shown in Table 2.

Table 3 shows the matrix specification for a V type quantum gate with
target line a and control line c. Line b is not connected for this gate.

A reversible/quantum circuit is a cascade (from input to output) of gates
g0, g1, g2, . . .Each gategi has a matrix representationMi where the dimension
depends on the radix and the number of lines in the circuit. The matrix defining
the transformation performed by the overall circuit comprised of k gates in a
cascade is given by Mk−1 ×· · ·×M2 ×M1 ×M0. The challenge is that the size

“MVLSC” — “d128” — 2007/6/25 — 16:40 — page 5 — #5

QMDD Minimization using Sifting for Variable Reordering 5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

0 0 0 0
1 + i

2

1 − i

2
0 0

0 0 0 0
1 − i

2

1 + i

2
0 0

0 0 0 0 0 0
1 + i

2

1 − i

2

0 0 0 0 0 0
1 − i

2

1 + i

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

TABLE 3
Representation of the Quantum Gate V (a; c) in a Circuit with Lines a, b, c

of these matrices and the computation required for matrix multiplication by
traditional techniques is prohibitive for all but a small number of circuit lines.
For example, for a ternary circuit with 10 lines each matrix has dimension
59,049 by 59,049.

2.3 Quantum multiple-valued decision diagrams
The use of binary decision diagrams for the representation and manipulation of
matrices was discussed in [3,4]. Quantum multiple-valued decision diagrams
(QMDD) were introduced in [10,11] as a means to represent and manipu-
late the matrices required for reversible/quantum gates and circuits. Here we
present a brief description of QMDDs and assume the reader is familiar with
fundamental decision diagram techniques [16].

As noted above, a reversible/quantum circuit with n lines has a transfor-
mation matrix of dimension rn × rn where r is the radix. Such transformation
matrices quickly explode in size. However, they do exhibit a great degree of
regularity.

A matrix of dimension rn × rn can be partitioned as:

M =

⎡
⎢⎢⎢⎣

M0 M1 · · · Mr−1
Mr Mr+1 · · · M2r−1
...

...
. . .

...

Mr2−r Mr2−r+1 · · · Mr2−1

⎤
⎥⎥⎥⎦ (1)

where each Mi is a submatrix of dimension rn−1×rn−1. Each of the Mi can be
similarly partitioned and the process repeated until scalars are reached. This
repeated partitioning leads to the fundamental QMDD structure.

Definition 2. We shall refer to a matrix partition of the type shown in eqn. (1)
as an r2-partitioning.

“MVLSC” — “d128” — 2007/6/25 — 16:40 — page 6 — #6

6 D. Michael Miller et al.

Definition 3. A quantum multiple-valued decision diagram (QMDD) [10] is
a directed acyclic graph with the following properties:

• There is a single terminal vertex annotated with value 1. The terminal
vertex has no outgoing edges.

• There are some number of non-terminal vertices each labeled by an
r2-valued selection variable. Each non-terminal vertex has r2 outgoing
edges designated e0, e1, . . . , er2−1.

• One vertex is the start vertex and has a single incoming edge that itself
has no source vertex.

• Every edge in the QMDD, including the one leading to the start vertex,
has an associated complex-valued weight. An edge with weight of 0
must point to the terminal vertex. This is required to ensure uniqueness
of the representation of each matrix.

• The selection variables are ordered (assume with no loss of generality
the ordering x0 ≺ x1 ≺ · · · ≺ xn−1) and the QMDD satisfies the
following two rules:

— Each selection variable appears at most once on each path from the
start vertex to the terminal vertex.

— An edge from a non-terminal vertex labeled xi points to a non-
terminal vertex labeled xj , j < i or to the terminal vertex. Hence
x0 is closest to the terminal and xn−1 labels the start vertex.

• No non-terminal vertex is redundant, i.e. no non-terminal vertex has its
r2 outgoing edges all with the same weights and pointing to a common
vertex.

• Each non-terminal vertex is normalized (see details of the normalization
process in the next subsection).

• Non-terminal vertices are unique, i.e. no two non-terminal vertices
labeled by the same xi can have the same set of outgoing edges (desti-
nations and weights).

2.4 Vertex normalization
The initial definition of QMDDs [10,11] used the following normalization
rule:

Definition 4. A QMDD vertex is normalized if its outgoing edges are such
that there is a j such that the edge ej , 0 ≤ j ≤ r2 − 1, has weight 1 and
ei, ∀i, 0 ≤ i < j has weight 0.

“MVLSC” — “d128” — 2007/6/25 — 16:40 — page 7 — #7

QMDD Minimization using Sifting for Variable Reordering 7

When this normalization rule is used, each vertex is normalized when it
is constructed by finding the nonzero weight on the lowest index edge (one
must exist or the vertex is redundant), dividing all edge weights by the weight
identified, and attaching the identified weight to the edge leading to the vertex.

Given this definition of normalization, it is possible to show that the QMDD
representation for any given matrix is unique.

Theorem 1. An rn×rn complex valued matrix M has a unique (up to variable
reordering or relabeling) QMDD representation.

Proof: The proof is by induction on n.
n = 0: In this case, M is a single element. The QMDD representation

consists of the terminal vertex which is also the start vertex and no nonterminal
vertices. The weight on the edge leading to the terminal (start) vertex is the
value in M . This is clearly a unique representation.

n > 0: Assume the result holds for all rn−1 × rn−1 matrices. Consider thee
r2-partitioning of a matrix M of dimension rn × rn. Since each submatrix
Mi has dimension rn−1 × rn−1, by the inductive hypotheses the QMDD for
each Mi is unique. Let sv, which is labeled xn−1, denote the start vertex
for the QMDD representing M . Initially, equate each outgoing edge ek, 0 ≤
k ≤ rn − 1 from sv to the edge pointing to the start vertex in the QMDD
representation of Mi , and give the edge leading to sv weight 1.

Normalizing sv as defined above, begins by finding the smallest k such
that the weight wk on edge ek from sv is nonzero. If wk = 1, sv is already
normalized. If wk �= 0, divide all the nonzero weights on outgoing edges from
sv by wk and set the weight on the edge leading to sv to wk .

Since the QMDD for each Mi is unique up to variable reordering or rela-
belling and the normalization process ensures sv and its associated edge
weights are unique, the QMDD for M is unique up to variable reordering
or relabelling. �

We have found that vertex normalization as given in Definition 4 does allow
for adjacent variable interchange to be performed as an operation local to the
variables being interchanged for QMDDs representing 0-1 matrices such as
those representing reversible binary and multiple-valued circuits. However,
it does not for QMDDs representing some matrices encountered for quantum
circuits. The problem arises since variable reordering changes the order in
which the elements of the matrix are considered and normalization as defined
in Definition 4 can identify different normalization divisors depending on the
variable order.

The solution is to use the following alternative normalization definition:

Definition 5. A QMDD vertex is normalized if its outgoing edges are such
that the largest weight on any edge out of the vertex is 1.

“MVLSC” — “d128” — 2007/6/25 — 16:40 — page 8 — #8

8 D. Michael Miller et al.

Note there is no natural ordering for complex numbers. In this work we
consider the complex number rae

iθa to be greater than rbe
iθb if ra > rb or in

the case when ra = rb, θa < θb.
When Definition 5 is used, the process for normalizing a vertex is as

described above except the maximum weight on the edges from the vertex
is used as the divisor and incoming edge weight. This approach is indepen-
dent of variable order, and allows for adjacent variable interchange as a local
operation since the maximum value in a matrix is independent of the order
in which the matrix elements are considered. The result of Theorem 1 is still
applicable with this modified normalization rule and QMDDs formed with
the modified normalization rule thus provide a canonical representation for all
matrices encountered for reversible and quantum circuits.

2.5 Skipped variables
In implementing a sifting procedure for QMDDs, it is necessary to formulate
an efficient adjacent variable interchange procedure. Such a procedure is more
complex, as are QMDD-based matrix addition and multiplication, if interme-
diate variables are “skipped”. This section provides a proof that intermediate
variables in a QMDD representing a binary or multiple-valued reversible cir-
cuit are never skipped unless the outgoing edge points directly to the terminal
vertex and has weight 0. We conjecture that this is also the case for quantum
circuits.

Definition 6. Given the ordering x0 ≺ x1 ≺ · · · ≺ xn−1, an edge from a
vertex labeled xi, i > 0, skips a variable if it points to the terminal vertex or
it points to a vertex labeled xj , j < i − 1.

Theorem 2. A QMDD for a matrix representing a binary or multiple-valued
reversible circuit has no edges that skip variables except for edges that point
to the terminal vertex and have weight 0.

Proof: It is clear from the definition of QMDD, that an edge with nonzero
weight that skips a variable means the corresponding matrix has a sub-matrix
of equal non-zero entries of dimension rk × rk for some k > 0. However,
the matrix representing a binary or multiple-valued reversible function is a
permutation matrix since reversible functions are bijections and thus has only
0 and 1 entries with a single 1 in each row and column. It follows that the
QMDD for such a circuit can have no edges with nonzero weight that skip
variables. �

Conjecture 2.1. Theorem 2 also holds for a QMDD corresponding to a circuit
composed of quantum gates.

The proof of Theorem 2 is based on the fact that reversible binary or
multiple-valued logic gates/circuits are represented by permutation matrices.
In the quantum case, the matrix describing a gate/circuit is an rn × rn unitary
matrix with complex-valued elements [5,12]. The matrix is constructed from

“MVLSC” — “d128” — 2007/6/25 — 16:40 — page 9 — #9

QMDD Minimization using Sifting for Variable Reordering 9

an r × r unitary gate operation matrix U (see examples in Table 1) using
the Kronecker product and a similar complexity matrix composition operator.
Detail of the construction procedure for the matrix describing a gate can be
found in [10].

The following lemmas are a basis for approaching a proof of Conjecture 2.1.

Lemma 1. Given the ordering x0 ≺ x1 ≺ · · · ≺ xn−1, an edge from a QMDD
nonterminal vertex labeled xi+1 representing the matrix M skips variable xi

if, and only if, at least one Mj in its r2-partitioning itself partitions into r2

identical sub-matrices.

Proof: Suppose there is an Mj that partitions into r2 identical sub-matrices.
Consider the QMDD representation of Mj . It does not have a start vertex
labeled by xi since that vertex would have all its outgoing edges identical
which makes it redundant. The correct representation for Mj , is an edge
pointing to the common submatrix and xi is therefore skipped.

Conversely, consider the representation of M with start vertex sv labelled
xi+1. Assume edge ej from sv skips variable xi which means it leads to a
vertex representing a matrix Mj whose value is independent of the value of
xi the highest candidate selection variable. Clearly, this only happens if Mj is
itself composed of r2 identical submatrices. �

Lemma 2. The rn × rn unitary matrix for a quantum gate constructed from
an r × r unitary operation matrix U has the property that every row/column
consists of either (a) a single 1 with all other entries 0, or (b) a distribution
of the elements of a row/column of U with the other elements 0.

Proof: The proof follows directly from the procedure for constructing the
matrix describing the gate (see [10]). �

The actual distribution of values described in Lemma 2 depends on
which are the target, the control lines and the unconnected lines for the gate
in question.

Empirical evidence shows Conjecture 2.1 is very likely true and we are
currently working on a formal proof. The challenge lies in characterizing the
complete situation to cover arbitrary quantum gates for binary and multiple-
valued logic. It is important to note that QMDD are fully applicable, including
the variable reordering procedure discussed below, even if Conjecture 2.1 is
found to be false. The advantage of proving it to be true will be an even further
improvement to the QMDD implementation.

3 INTERCHANGING ADJACENT VARIABLES

We consider the case of interchanging variables α and β where the former
is immediately above the latter (closer to the start vertex) in the QMDD.
Recall that each vertex has r2 outgoing edges. The key is, as mentioned

“MVLSC” — “d128” — 2007/6/25 — 16:40 — page 10 — #10

10 D. Michael Miller et al.

above, to perform the interchange as a local transformation. The technique
presented is based on the technique developed by Miller and Drechsler [7] for
multiple-valued decision diagrams.

Consider a vertex γ labelled by variable α. We construct a square matrix
T of dimension r2 × r2.

For i = 0, 1, . . . , r2 − 1,

• if the ith edge from γ leads to a vertex δ labelled by variable β, then
for j = 0, 1, . . . , r2 − 1, Tij is set to point to the vertex pointed to by
the j th edge of δ with the edge weight being the product of the edge
weights on the ith edge from γ and the j th edge from δ;

• if the ith edge from γ leads to a vertex δ not labelled β, then Tij is set
to the ith edge from γ for j = 0, 1, . . . , r2 − 1.

Once T is constructed as above, the level interchange is made by relabelling
γ with β, and setting the j th edge from γ , j = 0, 1, . . . , r2 − 1 to point to
a vertex labelled α whose i-th edge, i = 0, 1, . . . , r2-1, points to the vertex
pointed to by Tij. During this construction the vertices are normalized as
described in Definition 5. It is easily seen that following this construction,
vertex γ , now labelled β, is the top vertex of a QMDD representing the same
matrix it did when originally labelled α.

The complete level interchange is accomplished by performing the above
for all vertices originally labelled α. These are readily identified as we use
a separate unique table [16] for each variable. The idea of relabelling these
vertices, as opposed to creating new vertices, is critical as it means that edges
leading to them, and the vertices from whence those edges originate, are
unaffected by the interchange. When a vertex is relabelled it must be removed
from one unique table and entered into the unique table corresponding to its
new variable label but this is a relatively simple operation given the data
structures used for QMDD [11].

The vertices originally labeled β are affected as edges to them are removed.
The use of reference count garbage collection [11] accounts for when a vertex
can be deleted (actually reused) or must be retained.

Note that no vertex above or below the two levels being interchanged is
affected except for changing the reference counts of vertices immediately
below. The result is that adjacent variable interchange is a local operation.

4 SIFTING QMDDS

Given the above method for adjacent variable interchange, variable reordering
for QMDDs is readily implemented using an approach based on Rudell’s
sifting approach [13] developed for binary decision diagrams.

“MVLSC” — “d128” — 2007/6/25 — 16:40 — page 11 — #11

QMDD Minimization using Sifting for Variable Reordering 11

In general terms, our sifting method proceeds as follows:

QMDD Sifting Procedure:
i) Select a variable α that labels the most vertices in the QMDD. In the

event of a tie, choose the variable closest to the terminal vertex.
ii) Sift α to the bottom (closest to the terminal vertex) of the QMDD by a

sequence of adjacent variable interchanges.
iii) Sift α to the top of the QMDD by a sequence of adjacent variable

interchanges.
iv) During steps (ii) and (iii) a record is kept of the position of α that yields

the smallest vertex count in the QMDD, so now sift α back down to that
position.

v) Repeat steps (i) to (iv) until each variable has been sifted into its best
position noting that once a variable is selected for sifting, it is not selected a
second time.

Note that the size of the QMDD after each variable interchange required
in step (iv) is determined by checking reference counts for the vertices for
the two variables being interchanged. It is not necessary to traverse the entire
QMDD. There are n! possible orderings of n variables. The sifting method
examines on the order of n2 orderings, and determines the ordering among
this subset that results in the smallest QMDD.

5 EXPERIMENTAL RESULTS

The QMDD package is implemented in C. The results reported here were run
on a laptop computer with a 1.73 GHz Intel Pentium M processor and 1GB of
RAM running LINUX on a 256MB virtual machine under VMware 5.5. We
used LINUX in order to compare our implementation to QuIDDPro 3.0(beta)
[15] which is available as an executable only. We used the gcc 4.0.0 C compiler
with level 4 optimization to compile the QMDD package.

5.1 Binary examples
Results for a number of binary functions from Maslov’s [6] benchmark web site
are reported in Table 4. For each circuit, we give the following information:

• type – nct: circuit uses NOT, controlled-NOT and Toffoli gates; qc:
circuit uses controlled-not, V and V + gates.

• lines – number of lines in the circuit,

• gates – number of gates in the circuit,

• number of vertices before sifting,

• time to build the QMDD – CPU msec. using the standard library time.h
routines,

“MVLSC” — “d128” — 2007/6/25 — 16:40 — page 12 — #12

12 D. Michael Miller et al.

• number of vertices after sifting,

• time to sift QMDD – CPU msec. using the standard library time.h
routines,

• percentage vertex count reduction by sifting,

• maximum number of vertices encountered during sifting – this is an
indicator of how large the QMDD might be but is not necessarily the
maximum since sifting does not consider all variable orderings.

The results show that the effect of sifting varies significantly from example
to example. A low improvement can be a result of having started from what
is already a good ordering, the fact that the sifting heuristic does not visit
all possible variable orderings, or, the function’s QMDD representation is
insensitive to variable ordering.

The results for the “hidden-weight-bit” examples hbw4 – hbw12 are inter-
esting. They show the size of the QMDD can grow exponentially with the
number of lines in the circuit. The benefit gained by sifting also increases with
the number of lines.

Table 4 also shows the results of using QuIDDPro Version 3.0(beta) [15]
on the same computer. On average, for the circuits shown, the number of
vertices for the QuIDDPro representation is 2.06 times the number for the
QMDD representation prior to sifting. This is as expected since a nonterminal
QuIDDPro vertex has two outgoing edges while a nonterminal QMDD vertex
has four outgoing edges for binary functions. What is interesting is how much
the ratio can differ from 2. The largest sized decision diagrams for the circuits
shown is for cyc17_3 where the ratio is 2.47. QuIDDPro uses the highly
efficient CUDD decision diagram package [14] and also offers considerably
more functionality than the current QMDD implementation. QuIDDPro is
designed for binary reversible and quantum gates and circuits.

5.2 Ternary Examples
There are as yet no established benchmarks for multiple-valued reversible and
quantum circuits available in the literature. This is largely because CAD tools
for designing and simulating such circuits are not generally well developed.
Indeed it is hoped that QMDD will be helpful in this regard.

Table 5 contains some ternary examples. The first is the reversible ternary
adder from [10] shown in Fig. 2. The initial QMDD is relatively small (23 ver-
tices) but even in this case sifting results in notable reduction of the number
of vertices.

The S circuits are highly regular. An S circuit with n lines has n−1 gates
where gate gi is a C1 gate with target xi and a single 1-control xi+1. As
expected, given this regular and quite simple structure, the QMDDs are small
(the number of vertices is twice the number of lines in the circuit) and can

“MVLSC” — “d128” — 2007/6/25 — 16:40 — page 13 — #13

QMDD Minimization using Sifting for Variable Reordering 13

na
m

e
ty

pe
lin

es
ga

te
s

a
b

c
d

e
f

g
h

5m
od

5
nc

t
6

17
28

0
16

8
43

.9
%

28
45

77
6s

ym
d2

nc
t

10
20

24
7

7
17

0
42

31
.2

%
47

8
29

9
11

7
9s

ym
d2

nc
t

12
28

22
9

7
18

4
50

19
.7

%
55

8
44

5
19

4
c2

nc
t

35
11

6
15

0
30

13
6

28
9

9.
3%

50
4

34
8

15
46

c2
qc

35
30

5
15

0
22

0
13

6
24

1
9.

3%
50

4
34

8
10

24
5

c3
-1

7
nc

t
3

6
10

0
10

4
0.

0%
11

21
22

c4
10

18
4

nc
t

14
46

39
0

33
43

15
.4

%
86

86
27

4
c4

10
18

4
qc

14
74

39
0

33
52

15
.4

%
86

86
49

2
cy

c1
7-

3
nc

t
20

48
23

6
10

42
13

1
82

.2
%

41
8

58
4

88
0

ha
m

3
nc

t
3

5
10

0
10

0
0.

0%
10

21
21

ha
m

15
nc

t
15

13
2

45
22

14
0

26
38

48
8

42
.7

%
13

87
8

75
47

20
51

hw
b4

nc
t

4
11

22
0

20
4

9.
1%

22
45

43
hw

b4
qc

4
21

22
0

20
8

9.
1%

22
45

83
hw

b7
nc

t
7

28
9

17
9

30
15

5
16

13
.4

%
18

1
35

1
21

17
hw

b8
nc

t
8

61
4

34
3

12
0

28
0

28
18

.4
%

35
1

68
4

62
54

hw
b9

nc
t

9
15

41
68

3
64

0
52

0
40

23
.9

%
69

0
13

49
24

56
6

hw
b1

0
nc

t
10

35
95

13
31

29
20

96
0

59
27

.9
%

13
47

26
50

98
70

4
hw

b1
1

nc
t

11
93

14
26

39
14

29
0

17
30

13
0

34
.4

%
26

85
52

23
47

85
55

hw
b1

2
nc

t
12

18
39

3
51

67
53

35
0

31
85

26
5

38
.4

%
52

54
10

28
3

17
22

05
0

rd
84

d1
nc

t
15

28
35

88
27

39
6

11
7

89
.0

%
44

15
12

52
25

5

TA
B

L
E

4
E

xp
er

im
en

ta
lR

es
ul

ts
–

bi
na

ry
ci

rc
ui

ts
.

(a
)v

er
tic

es
be

fo
re

si
ft

in
g

(b
)t

im
e

to
bu

ild
Q

M
D

D
(m

se
c)

(c
)v

er
tic

es
af

te
rs

if
tin

g
(d

)t
im

e
to

si
ft

Q
M

D
D

(m
se

c)
(e

)v
er

te
x

co
un

tr
ed

uc
tio

n
by

si
ft

in
g

(f
)m

ax
.v

er
tic

es

du
ri

ng
si

ft
in

g
(g

)
Q

uI
D

D
Pr

o
ve

rt
ic

es
(h

)
tim

e
to

bu
ild

B
D

D
(m

se
c)

“MVLSC” — “d128” — 2007/6/25 — 16:40 — page 14 — #14

14 D. Michael Miller et al.

name lines gates a b c d e f

adder 4 16 23 0 15 4 34.8% 39
S25 25 24 50 11 50 312 0.0% 184
S50 50 49 100 58 100 1370 0.0% 384
S75 75 74 150 168 150 3112 0.0% 584
S100 100 99 200 370 200 5550 0.0% 784
R5-25 5 25 132 11 124 15 6.1% 185
R5-50 5 50 204 35 200 23 2.0% 205
R5-75 5 75 196 58 193 19 1.5% 208
R5-100 5 100 203 85 198 23 2.5% 213
R10-25 10 25 1308 74 442 105 66.2% 1308
R10-50 10 50 9670 687 6839 1081 29.3% 12151
R10-75 10 75 41170 6776 34991 7901 15.0% 45826
R10-100 10 100 51133 12361 46556 10646 9.0% 52785

TABLE 5
Experimental Results – ternary circuits.
(a) vertices before sifting (b) time to build QMDD (msec) (c) vertices after sifting (d) time to sift

QMDD (msec) (e) vertex count reduction by sifting (f) max. vertices during sifting

be shown to have a very regular structure. Sifting results in no improve-
ment, but, and this is a disadvantage of the heuristic, considerable computation
is required.

Each Rn-m circuit has n lines and m pseudo-randomly generated gates.
Each gate is randomly chosen to be C1 or C2 with a randomly chosen target
and a single randomly chosen control. The control is randomly chosen to be a
1 or 2-control. The improvement by sifting is as expected quite variable.

These examples indicate that QMDD construction and sifting are reason-
ably practical for quite large binary and ternary problems. It is a concern that
the cost of sifting seems quite high for large ternary examples. We are looking
for ways to improve the implementation, but it may well simply be that we
are dealing with representations of very large and very complex matrices in
those cases.

The QMDD package is applicable for higher radix problems as well. To
put this in better context, we note that constructing a QMDD for an r−valued,
n-line circuit with m gates is equivalent to constructing m rn × rn matrices
and performing m−1 matrix multiplications but this approach does so in a
tractable manner.

6 CONCLUSIONS AND FUTURE WORK

This paper has considered variable reordering in QMDDs and has described
a sifting technique for determining good variable orderings. The experimen-
tal results show the method can be quite effective but also that it can be
computationally expensive sometimes with little benefit.

“MVLSC” — “d128” — 2007/6/25 — 16:40 — page 15 — #15

QMDD Minimization using Sifting for Variable Reordering 15

We are working on criteria that may help in determining when it is likely
to be useful to apply sifting to a QMDD. We are studying the special structure
of QMDDs not evident in general decision diagrams such as the frequency of
edges of weight 0 pointing to the terminal vertex and the regular structure of a
QMDD resulting from the regular structure of the matrices being represented.
We are also exploring how sifting can be used to transform QMDD to variable
orderings that will better illuminate the structure of the matrices for synthesis.

ACKNOWLEDGEMENTS

This work was supported by a Discovery Grant from the Natural Sciences and
Engineering Research Council of Canada. Tony Xiao assisted with the use
of QuIDDPro and with the collection of the experimental data. A preliminary
version of this paper was presented at the 2007 IEEE International Symposium
on Multiple-Valued Logic [9].

REFERENCES

[1] C.H. Bennett. (1973). Logical reversibility of computation. IBM J. Research and
Development, 17-6:525–532.

[2] R.E. Bryant. (1986). Graph-based algorithms for Boolean function manipulation. In IEEE
Transactions on Computers, volume C35-8, pages 677–691.

[3] E.M. Clarke K.L. McMillan X. Zhao M. Fujita and J. Yang. (1993). Spectral applications
for large Boolean functions with applications to technology mapping. In Proc. ACM/IEEE
Design Automation Conference, pages 54–60.

[4] P.C. McGeer M. Fujita and J.C.-Y. Yang. (1997). Multi-terminal binary decision diagrams:
An efficient data structure for matrix representation. Formal Methods in System Design,
10(2/3):149–169.

[5] D.C. Marinescu and G.M. Marinescu. (2005). Approaching Quantum Computing. Pearson
Prentice Hall.

[6] D. Maslov, (2007). Reversible logic synthesis benchmarks page. http://www.cs.uvic.ca/
∼dmaslov/.

[7] D.M. Miller and R. Drechsler. (2003). Augmented sifting of multiple-valued decision
diagrams. In Proc. 2003 Int. Symposium on Multiple-Valued Logic, pages 275–282.

[8] D.M. Miller, G. Dueck, and D. Maslov. (2004). A synthesis method for MVL reversible
logic. In Proc. 2004 Int. Symposium on Multiple-Valued Logic, pages 74–80.

[9] D.M. Miller, D.Y. Feinstein, and M.A. Thornton. (2007). Variable reordering and sifting for
QMDD. In IEEE International Symposium on Multiple-Valued Logic. to appear.

[10] D.M. Miller and M.A. Thornton. (2006). QMDD: A decision diagram structure for
reversible and quantum circuits. In IEEE International Symposium on Multiple-Valued
Logic. CD-ROM.

[11] D.M. Miller, M.A. Thornton, and D. Goodman. (2006). A decision diagram package
for reversible and quantum circuits. In Proc. IEEE World Congress on Computational
Intelligence. CD-ROM.

[12] M.A. Nielsen and I.L. Chuang. (2000). Quantum Computation and Quantum Information.
Cambridge University Press.

“MVLSC” — “d128” — 2007/6/25 — 16:40 — page 16 — #16

16 D. Michael Miller et al.

[13] R. Rudell. (1993). Dynamic variable ordering for ordered binary decision diagrams. In
Proc. International Conference on Computer-Aided Design, pages 42–47.

[14] F. Somenzi, (2007). The CUDD package version 2.4.0. http://vlsi.colorado.edu/∼fabio/.

[15] G.F. Viamontes, I.L. Markov, and J.P. Hayes, (2006). QuIDDPro: High-performance
quantum circuit simulation. vlsicad.eecs.umich.edu/Quantum/qp/.

[16] S.N. Yanushkevitch, D.M. Miller, V.P. Shmerko, and R.S. Stankovic. (2006). Decision
Diagram Techniques for Micro- and Nanoelectronic Design.CRC Taylor and Francis.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

