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Abstract 

This paper considers variable reordering for 
quantum multiple-valued decision diagrams (QMDD) 
used to represent the matrices describing reversible 
and quantum gates and circuits.  An efficient method 
for adjacent variable interchange is presented and this 
method is employed to implement sifting of QMDDs.  
Experimental results are presented showing the 
effectiveness of the proposed techniques. 

1. Introduction 

A reversible / quantum circuit is a cascade of 
reversible / quantum gates.  The behaviour of each 
such gate can be described as a matrix and the function 
performed by the circuit is described by the product of 
the individual gate matrices.  The computational 
problem is that an n-line gate in r-valued logic has 
dimension n nr r× so the matrices quickly become very 
unwieldy. 

The quantum multiple-valued decision diagram 
(QMDD) data structure presented in [9][10] was 
specifically designed to address this problem.  A 
QMDD represents the matrix corresponding to a gate 
or circuit as a directed acyclic graph.  Efficient 
methods for constructing QMDDs for individual gates 
and for performing matrix multiplication directly with 
QMDDs is presented in [9]. 

As is the case for other decision diagram 
representations such as the ordered binary decision 
diagram [2], the number of vertices in a QMDD 
depends on the variable ordering selected.  This paper 
addresses variable ordering for QMDDs.  We present 
methods for adjacent variable interchange and a 
heuristic vertex reduction algorithm based on Rudell’s 
‘sifting’ technique [7].  We also describe 
enhancements to the QMDD structure and its 
implementation required to make variable reordering 
efficient and effective. 

Section 2 presents the basic concepts of binary and 
MVL reversible and quantum gates and circuits with 
particular emphasis on the matrix representation.  

Section 3 addresses adjacent variable interchange for 
QMDD.  Section 4 shows how the heuristic variable 
ordering technique known as ‘sifting’ can be applied 
to QMDDs.  Experimental results are presented in 
section 5 and the paper concludes with observations 
and suggestions for further research. 

2. Preliminaries 

2.1 Reversible Logic and Quantum Circuits  

We present the basic concepts of reversible and 
quantum circuits necessary for this paper.  More 
extensive background is available in the literature (e.g. 
[6]). 

Definition 1: A gate / circuit is logically reversible if it 
maps each input pattern to a unique output pattern. 

Binary reversible gates and circuits have seen 
considerable interest due to Landauer’s principle 
which states that the erasure of information dissipates 
energy. Bennet [1] showed that for a binary circuit to 
not consume energy, it must be composed of reversible 
gates.  The concept of reversibility has been extended 
to MVL circuits [5]. Quantum logic gates and circuits 
are inherently both logically and physically reversible 
[6].  In general, the behaviour of reversible and 
quantum gates and circuits can be described by 
complex-valued matrices and are modeled as bijective 
functions. 

             
Figure 1: A binary reversible circuit 

Fig. 1 shows a binary reversible circuit with 3 lines 
and 5 gates.  The symbol ⊕ denotes the NOT 
operation.  For each gate, the NOT operates on the 
target line if every control line (lines with a black 
circle) has the value 1.  Otherwise the target line is 
unchanged.  Control and unconnected lines pass 
through the gate unchanged.  A gate with no controls 



 

is a conventional NOT gate.  One with a single control 
is termed a controlled-NOT and gates with more than 
one control are Toffoli gates [6]. 

Multiple-valued reversible circuits have been 
considered in [5].  The structure illustrated in Fig. 1 is 
generalized so that the target line is operated on by a 
negation or cycle operation depending on the values of 
the control lines.  The non-zero values indicated in the 
control line connections specify the nonzero value 
required in order to trigger the operation.  Fig. 2 shows 
a reversible circuit from [5] that operates as described 
and realizes a ternary full adder. 

 
Figure 2: A ternary reversible full adder 

Quantum logic gates [6] operate in a similar 
fashion with the values on designated control lines 
determining if a particular quantum logic 
transformation is to be applied to the target line. 

2.2 Matrix Representation of Reversible and 
Quantum Gates and Circuits  

The operations performed on the target line for the 
gates considered in this paper are given by the r×r 
matrices in Table 1. NOT is the normal binary 
complement shown as ⊕ in Fig. 1.  V and V+ are 
quantum operations.  Note that V+ = V-1.  NEG is 
ternary negation and C1 and C2 are the two ternary 
unary cycle operations [5]. 
 

Table 1: Gate operation matrices 

Binary (r=2)Matrices  Ternary (r=3)Matrices  
NOT 0 1

1 0
⎛ ⎞
⎜ ⎟
⎝ ⎠

 
NEG 0 0 1

0 1 0
1 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

V 1 1
2 2

1 1
2 2

i i

i i

+ −⎛ ⎞
⎜ ⎟
⎜ ⎟
− +⎜ ⎟⎜ ⎟

⎝ ⎠

 

C1 0 1 0
0 0 1
1 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

V+ 1 1
2 2

1 1
2 2

i i

i i

− +⎛ ⎞
⎜ ⎟
⎜ ⎟
+ −⎜ ⎟⎜ ⎟

⎝ ⎠

 

C2 0 0 1
1 0 0
0 1 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

The matrices in Table 1 define the operation on the 
target line.  The matrix definition for an r-valued gate 
in an n-line reversible or quantum circuit has 
dimension n nr r× taking into account the operation on 
the target line and the control and unconnected lines. 

For example, the leftmost gate in Fig. 1 has the 
specification and matrix definition given in Fig. 3. 

c b a c+ b+ a+ 
0 0 0 0 0 0 
0 0 1 0 0 1 
0 1 0 0 1 0 
0 1 1 0 1 1 
1 0 0 1 0 0 
1 0 1 1 0 1 
1 1 0 1 1 1 
1 1 1 1 1 0 

 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

 

Figure 3: Specification and matrix 
representation 

for the Toffoli gate T(a;b,c) in a 3-line circuit 

Fig. 4 shows the matrix specification for a V type 
quantum gate which has complex valued entries. 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

1 10 0 0 0 0 0
2 2

1 10 0 0 0 0 0
2 2

1 10 0 0 0 0 0
2 2

1 10 0 0 0 0 0
2 2

i i

i i

i i

i i

+ −

− +

+ −

− +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Figure 4: Matrix representation for the 
quantum gate V(a;c) in a circuit with lines 

a,b,c 

A reversible / quantum circuit is a cascade (from 
input to output) of gates 0 1 2, , ,...g g g  Each gate gi has 
a matrix representation Mi where the dimension 
depends on the radix and the number of lines in the 
circuit.  The matrix defining the transformation 
performed by the overall circuit is given by 

2 1 0... .M M M× ×  The challenge is that the size of 
these matrices and the computation required for matrix 
multiplication by traditional techniques is prohibitive 
for all but a small number of circuit lines.  For 
example, for a ternary circuit with 10 lines each matrix 
has dimension 59049 by 59049. 

 



 

2.3 Quantum Multiple-valued Decision 
Diagrams 

Quantum multiple-valued decision diagrams 
(QMDD) were introduced in [9][10] as a means to 
represent and manipulate the matrices required for 
reversible and quantum gates and circuits.  Here we 
present a brief description of QMDDs and assume the 
reader is familiar with the fundamentals of decision 
diagram techniques [12]. 

As noted above, a reversible / quantum circuit with 
n lines has a transformation matrix of dimension 

n nr r× where r is the radix. Such transformation 
matrices quickly explode in size.  However, they do 
exhibit a great degree of regularity.  

A matrix of dimension n nr r×  can be partitioned 
as: 

     

2 2 2

0 1 1

1 2 1

1 1

r

r r r

r r r r r

M M M
M M M

M

M M M

−

+ −

− − + −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M M O M

L

 

where each Mi element is a matrix of dimension 
1 1.n nr r− −×   Each of the Mi can be similarly partitioned 

and the process repeated until scalars are reached.  
This repeated partitioning leads to the fundamental 
QMDD structure.  

Definition 2: A quantum multiple-valued decision 
diagram (QMDD) [9] is a directed acyclic graph with 
the following properties: 

• There is a single terminal vertex with associated 
value 1. The terminal vertex has no outgoing 
edges. 

• There are some number of non-terminal vertices 
each labeled by an r2-valued selection variable. 
Each non-terminal vertex has r2 outgoing edges 
designated 20 1 1, ,..., re e e − . 

• One vertex is the start vertex and has a single 
incoming edge that itself has no source vertex. 

• Every edge in the QMDD, including the one 
leading to the start vertex, has an associated 
complex-valued weight.  An edge with weight of 0 
must point to the terminal vertex.  This is required 
to ensure uniqueness of the representation of each 
matrix. 

• The selection variables are ordered (assume with 
no loss of generality the ordering 

0 1 1... nx x x −p p p ) and the QMDD satisfies the 
following two rules: 

- Each selection variable appears at most 
once on each path from the start vertex to 
the terminal vertex. 

- An edge from a non-terminal vertex 
labeled xi  points to a non-terminal vertex 
labeled xj, j < i or to the terminal vertex. 
Hence x0 is closest to the terminal and xn-

1 labels the start vertex. 
• No non-terminal vertex is redundant, i.e. no non-

terminal vertex has its r2 outgoing edges all with 
the same weights and pointing to a common 
vertex. 

• Each non terminal vertex is normalized (see 
details in next subsection). 

• Non-terminal vertices are unique, i.e. no two non-
terminal vertices labeled by the same xi can have 
the same set of outgoing edges (destinations and 
weights). 

As is common for decision diagram 
representations, a key property of QMDDs is that the 
representation for any given matrix is unique.  A proof 
is available from the authors. A key feature of this 
proof is the normalization process that is applied 
during the construction of a QMDD. 

2.4 Vertex Normalization 

The initial definition of QMDD [9][10] used the 
following normalization rule: 

Definition 3: A QMDD vertex is normalized if its 
outgoing edges are such that there is a j such that 

2,0 1,je j r≤ ≤ − has weight 1 where 

, ,0 .ie i i j∀ ≤ < has weight 0. 

When this rule is used, each vertex is normalized 
when it is constructed by finding the nonzero weight 
on the lowest index edge (one must exist or the vertex 
is redundant), dividing all edge weights by the weight 
identified, and attaching the identified weight to the 
edge leading to the vertex. 

We have found that vertex normalization as given 
in Definition 3 does allow for adjacent variable 
interchange to be performed as an operation local to 
the variables being interchanged for QMDDs 
representing reversible binary and multiple-valued 
circuits.  However, it does not for QMDDs 
representing some quantum circuits.  Space does not 
permit us to provide a full explanation here but 
basically the problem arises since variable reordering 
changes the order in which the elements of the matrix 
are considered and normalization as defined in 
Definition 3 can identify different normalization 
divisors depending on the variable order. 



 

The solution is to use the following alternative 
normalization definition: 

Definition 4: A QMDD vertex is normalized if its 
outgoing edges are such that the largest weight on any 
edge out of the vertex is 1. 

When this rule is used, the process for normalizing 
a vertex is as described above except the maximum 
weight (i.e. largest magnitude among the complex 
weights) on the edges from the vertex is used as the 
divisor and incoming edge weight.  This approach is 
independent of variable order, and allows for adjacent 
variable interchange as a local operation since the 
maximum value in a matrix is independent of which 
order one traverses the matrix.  

2.5  Skipped Variables 

Definition 5: Given the ordering 0 1 1... nx x x −p p p  
an edge from a vertex labeled , 0,ix i > skips a variable 
if it points to the terminal vertex or it points to a vertex 
labeled , 1.jx j i< −  

Theorem 1: A QMDD for a matrix representing a 
binary or multiple-valued reversible circuit has no 
edges that skip variables except for edges that point to 
the terminal vertex and have weight 0. 

Proof: It is clear from the definition of QMDD, that an 
edge with nonzero weight that skips a variable means 
the corresponding matrix has a sub-matrix of adjacent 
non-zero entries of dimension k kr r× for some k > 0.  
However, the matrix representing a binary or multiple-
valued reversible function is a permutation matrix 
since reversible functions are bijections and thus has 
only 0 and 1 entries with a single 1 in each row and 
column.  It follows that the QMDD for such a circuit 
can have no edges with nonzero weight that skip 
variables.                 

Conjecture 1:  Theorem 1 also holds for a QMDD 
corresponding to a circuit composed of quantum gates. 

Empirical evidence shows conjecture 1 is likely 
true.  We are currently working on a formal proof. 

It is straightforward to show this conjecture is true 
for the matrices describing individual reversible and 
quantum gates by construction, and also for the matrix 
representing a reversible binary or MVL circuit since 
these matrices are permutation matrices and the only 
constant square blocks in a permutation matrix have 
value 0.  We have not yet been able to show it is true 
for arbitrary cascades of quantum gates. 

3. Interchanging Adjacent Variables 

We consider the case of interchanging variables α 
and β where the former is immediately above the latter 
(closest to the initial vertex) in the QMDD.  Note that 
each vertex has r2 outgoing edges.  The key is, as 
mentioned above, to perform the interchange as a local 
transformation. The technique presented is based on 
the technique developed by Miller and Drechsler [4] 
for multiple-valued decision diagrams . 

Consider a vertex γ labelled by variable α.  We 
construct a square matrix T of dimension r2.  For 
i=0,1,…, r2-1,  

(a) if the i-edge from γ leads to a vertex δ labelled 
by variable β, then for j=0,1,…, r2-1, ijT is set to 
point to the vertex pointed to by the j-edge of δ 
with the edge weight being the product of the 
edge weights on the i-th edge from γ and the j-th 
edge from δ; 

(b) if the i-edge from γ leads to a vertex δ not 
labelled β, then ijT  is set to the i-edge from γ for 
j=0,1,…, r2-1. 

Once T is constructed as above, the level 
interchange is made by relabelling γ with β, and 
setting each j-edge from γ, j=0,1,…,q-1 to point to a 
vertex labelled α whose i-th edge, i=0,1,…,p-1, points 
to the vertex pointed to by .ijT  During this 
construction, if β denotes a variable, the edge 
operations are normalised as described in the previous 
subsection.  It is easily seen that following this 
construction, vertex γ, now labelled β, is the top of a 
decision diagram representing the same matrix it did 
when originally labelled α. 

The complete level interchange is accomplished by 
performing the above for all vertices originally 
labelled α. These are readily identified as we use a 
separate unique table [12] for each variable.  The idea 
of relabelling these vertices, as opposed to creating 
new vertices, is critical as it means that edges leading 
to them, and the vertices from whence those edges 
originate, are unaffected by the level interchange.  
When a vertex is relabelled it must be removed from 
one unique table and entered into the unique table 
corresponding to its new variable label but this is a 
relatively simple operation given the data structures 
used for QMDD [10]. 

The vertices originally labelled β are affected as 
edges to them are removed.  The use of reference 
count garbage collection [10] accounts for when a 
vertex can be deleted (actually reused) or must be 
retained.   



 

It is critical to note that no vertex above or below 
the two levels being interchanged is affected except 
for changing the reference counts of vertices 
immediately below.  The result is that adjacent 
variable interchange is a local operation affecting only 
the two levels being interchanged and reference counts 
for vertices immediately below those levels. 

4. Sifting QMDD 

Given the above method for adjacent variable 
interchange, variable reordering for QMDDs is readily 
implemented using an approach based on Rudell’s 
sifting approach  [7] developed for BDDs. 

In general terms, our sifting method proceeds as 
follows: 

QMDD Sifting Procedure: 

i)  Select a variable α that labels the most vertices 
in the QMDD.  In the event of a tie, choose the 
variable closest to the terminal vertex. 

ii)  Sift α to the bottom (closest to the terminal 
vertex) of the QMDD by a sequence of adjacent 
variable interchanges. 

iii) Sift α to the top of the QMDD by a sequence of 
adjacent variable interchanges. 

iv) During steps (ii) and (iii) a record is kept of the 
position of α that yields the smallest vertex 
count in the QMDD, so now sift α back down 
to that position. 

v)  Repeat steps (i) to (iv) until each variable has 
been sifted into its best position noting that 
once a variable is selected for sifting, it is not 
selected a second time. 

Note that the size of the QMDD after each variable 
interchange required in step (iv) is determined by 
checking reference counts for the vertices for the two 
variables being interchanged.  It is not necessary to 
traverse the entire QMDD. There are !n  possible 
orderings of n variables.  The sifting method examines 
on the order of 2n  orderings, and determines the 
ordering among this subset that result in the smallest 
QMDD. 

5. Experimental Results 

The QMDD package is implemented in C.  The 
results reported here were run on a laptop computer 
with a 1.73 GHz Intel Pentium M processor and 1GB 
RAM running LINUX on a 256MB virtual machine 
under VMware 5.5. We used LINUX in order to 
compare our implementation to QuIDDPro 3.0(beta) 
[11] which is available as an executable only. We used 

the gcc 4.0.0 C compiler with level 4 optimization to 
compile the QMDD package. 

5.1 Binary Examples 

Results for a number of binary functions from 
Maslov’s [3] benchmark web site are reported in Table 
2.  For each circuit, we give the following information: 
a) type – nct: circuit uses not, controlled-not and 

Toffoli gates; qc: circuit uses controlled-not, V 
and V+ gates. 

b) lines – number of lines in the circuit, 
c) gates – number of gates in the circuit, 
d) number of vertices before sifting, 
e) time to build the QMDD – CPU msec. using the 

standard library time.h routines, 
f) number of vertices after sifting, 
g) time to sift QMDD – CPU msec. using the 

standard library time.h routines, 
h) percentage vertex count reduction by sifting, 
i) maximum number of vertices encountered during 

sifting – this is an indicator of how large the 
QMDD might be but is not necessarily the 
maximum since sifting does not consider all 
variable orderings. 

The results show that the effect of sifting varies 
significantly from example to example.  A low 
improvement can be a result of having started from 
what is already a good ordering, the fact that the 
sifting heuristic does not visit all possible variable 
orderings, or, the function’s QMDD representation is 
insensitive to variable ordering. 

The results for the “hidden-weight-bit” problems 
hbw4 – hbw12 are interesting.  They show the size of 
the QMDD can grow exponentially with the number of 
lines in the circuit. The benefit gained by sifting also 
increases with the number of lines. 

Table 2 also shows the results of using QuIDDPro 
Version 3.0(beta) on the same computer.  On average 
for the circuits shown, the number of vertices for the 
QuIDDPro representation is 2.06 times the number for 
the QMDD representation prior to sifting.  This is as 
expected since a nonterminal QuIDDPro vertex has 
two outgoing edges while a nonterminal QMDD 
vertex has four outgoing edges for binary functions.  
What is interesting is how much the ratio can differ 
from 2.  The largest sized decision diagrams for the 
circuits shown is for cyc17_3 where the ratio is 2.47.  
QuIDDPro uses the highly efficient CUDD decision 
diagram package and also offers considerably more 
functionality than the current QMDD implementation.  
QuIDDPro is designed for binary reversible and 
quantum gates and circuits.  



 

5.2 Ternary Examples 

There are as yet no established benchmarks for 
multiple-valued reversible and quantum circuits 
available in the literature.  This is largely because 
CAD tools for designing and simulating such circuits 
are not generally well developed.  Indeed it is hoped 
that QMDD will be helpful in this regard. 

Table 3 contains some ternary examples.  The first 
is the reversible ternary adder from [9] shown in Fig. 
2.  The initial QMDD is relatively small (23 vertices) 
but even in this case sifting results in notable 
reduction. 

The S circuits are highly regular.  An S circuit with 
n lines has n-1 gates where gate gi  is a C1 gate with 
target xi and a single 1-control xi+1.  As expected, 
given this regular and quite simple structure, the 
QMDDs are small (the number of vertices is twice the 
number of lines in the circuit) and can be shown to 
have a very regular structure.  Sifting results in no 
improvement, but, and this is a disadvantage of a 
heuristic, considerable computation is required. 

Each Rn-m circuit has n lines and m pseudo-
randomly generated gates.  Each gate is randomly 
chosen to be C1 or C2 with a randomly chosen target 
and a single randomly chosen control.  The control is 
randomly chosen to be a 1 or 2-control.  The 
improvement by sifting is as expected quite variable. 

These examples indicate that QMDD construction 
and sifting are reasonably practical for quite large 
binary and ternary problems.  It is a concern that the 
cost of sifting seems quite high for large ternary 
examples.  We are looking for ways to improve the 
implementation, but it may well be that we are dealing 
with representations of very large and very complex 
matrices in those cases. 

The QMDD package is applicable for higher radix 
problems as well.  To put this in better context, we 
note that constructing a QMDD for an r-valued, n-line 
circuit with m gates is equivalent to constructing m 

n nr r×  matrices and performing m-1 matrix 
multiplications but does so in a tractable manner. 

6. Conclusions and Future Work 

This paper has considered variable reordering in 
QMDD and has described a sifting technique for 
determining good variable orderings.  The 
experimental results show the method can be quite 
effective but also that it can be computationally 
expensive sometimes with little benefit. 

We are working on criteria that may help in 
determining when it is likely to be useful to apply 
sifting to a QMDD. We are studying the special 

structure of QMDDs not evident in general decision 
diagrams such as the frequency of edges of weight 0 
pointing to the terminal vertex, the regular structure of 
a QMDD resulting from the regular structure of the 
matrices being represented and our conjecture 
regarding skipped variables. We are also exploring 
how sifting can be used to transform QMDD to 
variable orderings that will better illuminate the 
structure of the matrices for synthesis procedures. 
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Table 2: Experimental Results – binary circuits 

name type lines gates 

vertices 
before 
sifting 

time to 
build 

QMDD 
(msec) 

vertices 
after 

sifting 

time to 
sift 

QMDD 
(msec) 

vertex 
count 

reduction 
by sifting 

max. 
vertices 
during 
sifting 

QuIDD
Pro 

vertices 

time to 
build 
BDD 

(msec) 
5mod5 nct 6 17 28 0 16 8 43.9% 28 45 77 
6symd2 nct 10 20 247 7 170 42 31.2% 478 299 117 
9symd2 nct 12 28 229 7 184 50 19.7% 558 445 194 
c2 nct 35 116 150 30 136 289 9.3% 504 348 1546 
c2 qc 35 305 150 220 136 241 9.3% 504 348 10245 
c3-17 nct 3 6 10 0 10 4 0.0% 11 21 22 
c410184 nct 14 46 39 0 33 43 15.4% 86 86 274 
c410184 qc 14 74 39 0 33 52 15.4% 86 86 492 
cyc17-3 nct 20 48 236 10 42 131 82.2% 418 584 880 
ham3 nct 3 5 10 0 10 0 0.0% 10 21 21 
ham15 nct 15 132 4522 140 2638 488 42.7% 13878 7547 2051 
hwb4 nct 4 11 22 0 20 4 9.1% 22 45 43 
hwb4 qc 4 21 22 0 20 8 9.1% 22 45 83 
hwb7 nct 7 289 179 30 155 16 13.4% 181 351 2117 
hwb8 nct 8 614 343 120 280 28 18.4% 351 684 6254 
hwb9 nct 9 1541 683 640 520 40 23.9% 690 1349 24566 
hwb10 nct 10 3595 1331 2920 960 59 27.9% 1347 2650 98704 
hwb11 nct 11 9314 2639 14290 1730 130 34.4% 2685 5223 478555 
hwb12 nct 12 18393 5167 53350 3185 265 38.4% 5254 10283 1722050 
rd84d1 nct 15 28 3588 27 396 117 89.0% 4415 1252 255 
 

Table 3: Experimental Results – ternary circuits 

name lines gates 

vertice
s 

before 
sifting 

time to 
build 

QMDD 
(msec) 

vertices 
after 

sifting 

time to 
sift 

QMDD 
(msec) 

vertex 
count 

reduction 
by sifting 

max. 
vertices 
during 
sifting 

adder 4 16 23 0 15 4 34.8% 39 
S25 25 24 50 11 50 312 0.0% 184 
S50 50 49 100 58 100 1370 0.0% 384 
S75 75 74 150 168 150 3112 0.0% 584 
S100 100 99 200 370 200 5550 0.0% 784 
R5-25 5 25 132 11 124 15 6.1% 185 
R5-50 5 50 204 35 200 23 2.0% 205 
R5-75 5 75 196 58 193 19 1.5% 208 
R5-100 5 100 203 85 198 23 2.5% 213 
R10-25 10 25 1308 74 442 105 66.2% 1308 
R10-50 10 50 9670 687 6839 1081 29.3% 12151 
R10-75 10 75 41170 6776 34991 7901 15.0% 45826 
R10-100 10 100 51133 12361 46556 10646 9.0% 52785 

 


