

Variable Reordering and Sifting for QMDD

D. Michael Miller David Y. Feinstein and Mitchell A. Thornton
Department of Computer Science Department of Computer Science and Engineering

University of Victoria Southern Methodist University
Victoria, BC, Canada Dallas, TX, USA
mmiller@cs.uvic.ca dfeinste,mitch@engr.smu.edu

Abstract

This paper considers variable reordering for
quantum multiple-valued decision diagrams (QMDD)
used to represent the matrices describing reversible
and quantum gates and circuits. An efficient method
for adjacent variable interchange is presented and this
method is employed to implement sifting of QMDDs.
Experimental results are presented showing the
effectiveness of the proposed techniques.

1. Introduction

A reversible / quantum circuit is a cascade of
reversible / quantum gates. The behaviour of each
such gate can be described as a matrix and the function
performed by the circuit is described by the product of
the individual gate matrices. The computational
problem is that an n-line gate in r-valued logic has
dimension n nr r× so the matrices quickly become very
unwieldy.

The quantum multiple-valued decision diagram
(QMDD) data structure presented in [9][10] was
specifically designed to address this problem. A
QMDD represents the matrix corresponding to a gate
or circuit as a directed acyclic graph. Efficient
methods for constructing QMDDs for individual gates
and for performing matrix multiplication directly with
QMDDs is presented in [9].

As is the case for other decision diagram
representations such as the ordered binary decision
diagram [2], the number of vertices in a QMDD
depends on the variable ordering selected. This paper
addresses variable ordering for QMDDs. We present
methods for adjacent variable interchange and a
heuristic vertex reduction algorithm based on Rudell’s
‘sifting’ technique [7]. We also describe
enhancements to the QMDD structure and its
implementation required to make variable reordering
efficient and effective.

Section 2 presents the basic concepts of binary and
MVL reversible and quantum gates and circuits with
particular emphasis on the matrix representation.

Section 3 addresses adjacent variable interchange for
QMDD. Section 4 shows how the heuristic variable
ordering technique known as ‘sifting’ can be applied
to QMDDs. Experimental results are presented in
section 5 and the paper concludes with observations
and suggestions for further research.

2. Preliminaries

2.1 Reversible Logic and Quantum Circuits

We present the basic concepts of reversible and
quantum circuits necessary for this paper. More
extensive background is available in the literature (e.g.
[6]).

Definition 1: A gate / circuit is logically reversible if it
maps each input pattern to a unique output pattern.

Binary reversible gates and circuits have seen
considerable interest due to Landauer’s principle
which states that the erasure of information dissipates
energy. Bennet [1] showed that for a binary circuit to
not consume energy, it must be composed of reversible
gates. The concept of reversibility has been extended
to MVL circuits [5]. Quantum logic gates and circuits
are inherently both logically and physically reversible
[6]. In general, the behaviour of reversible and
quantum gates and circuits can be described by
complex-valued matrices and are modeled as bijective
functions.

Figure 1: A binary reversible circuit

Fig. 1 shows a binary reversible circuit with 3 lines
and 5 gates. The symbol ⊕ denotes the NOT
operation. For each gate, the NOT operates on the
target line if every control line (lines with a black
circle) has the value 1. Otherwise the target line is
unchanged. Control and unconnected lines pass
through the gate unchanged. A gate with no controls

is a conventional NOT gate. One with a single control
is termed a controlled-NOT and gates with more than
one control are Toffoli gates [6].

Multiple-valued reversible circuits have been
considered in [5]. The structure illustrated in Fig. 1 is
generalized so that the target line is operated on by a
negation or cycle operation depending on the values of
the control lines. The non-zero values indicated in the
control line connections specify the nonzero value
required in order to trigger the operation. Fig. 2 shows
a reversible circuit from [5] that operates as described
and realizes a ternary full adder.

Figure 2: A ternary reversible full adder

Quantum logic gates [6] operate in a similar
fashion with the values on designated control lines
determining if a particular quantum logic
transformation is to be applied to the target line.

2.2 Matrix Representation of Reversible and
Quantum Gates and Circuits

The operations performed on the target line for the
gates considered in this paper are given by the r×r
matrices in Table 1. NOT is the normal binary
complement shown as ⊕ in Fig. 1. V and V+ are
quantum operations. Note that V+ = V-1. NEG is
ternary negation and C1 and C2 are the two ternary
unary cycle operations [5].

Table 1: Gate operation matrices

Binary (r=2)Matrices Ternary (r=3)Matrices
NOT 0 1

1 0
⎛ ⎞
⎜ ⎟
⎝ ⎠

NEG 0 0 1

0 1 0
1 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

V 1 1
2 2

1 1
2 2

i i

i i

+ −⎛ ⎞
⎜ ⎟
⎜ ⎟
− +⎜ ⎟⎜ ⎟

⎝ ⎠

C1 0 1 0
0 0 1
1 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

V+ 1 1
2 2

1 1
2 2

i i

i i

− +⎛ ⎞
⎜ ⎟
⎜ ⎟
+ −⎜ ⎟⎜ ⎟

⎝ ⎠

C2 0 0 1
1 0 0
0 1 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

The matrices in Table 1 define the operation on the
target line. The matrix definition for an r-valued gate
in an n-line reversible or quantum circuit has
dimension n nr r× taking into account the operation on
the target line and the control and unconnected lines.

For example, the leftmost gate in Fig. 1 has the
specification and matrix definition given in Fig. 3.

c b a c+ b+ a+
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Figure 3: Specification and matrix
representation

for the Toffoli gate T(a;b,c) in a 3-line circuit

Fig. 4 shows the matrix specification for a V type
quantum gate which has complex valued entries.

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

1 10 0 0 0 0 0
2 2

1 10 0 0 0 0 0
2 2

1 10 0 0 0 0 0
2 2

1 10 0 0 0 0 0
2 2

i i

i i

i i

i i

+ −

− +

+ −

− +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Figure 4: Matrix representation for the
quantum gate V(a;c) in a circuit with lines

a,b,c

A reversible / quantum circuit is a cascade (from
input to output) of gates 0 1 2, , ,...g g g Each gate gi has
a matrix representation Mi where the dimension
depends on the radix and the number of lines in the
circuit. The matrix defining the transformation
performed by the overall circuit is given by

2 1 0... .M M M× × The challenge is that the size of
these matrices and the computation required for matrix
multiplication by traditional techniques is prohibitive
for all but a small number of circuit lines. For
example, for a ternary circuit with 10 lines each matrix
has dimension 59049 by 59049.

2.3 Quantum Multiple-valued Decision
Diagrams

Quantum multiple-valued decision diagrams
(QMDD) were introduced in [9][10] as a means to
represent and manipulate the matrices required for
reversible and quantum gates and circuits. Here we
present a brief description of QMDDs and assume the
reader is familiar with the fundamentals of decision
diagram techniques [12].

As noted above, a reversible / quantum circuit with
n lines has a transformation matrix of dimension

n nr r× where r is the radix. Such transformation
matrices quickly explode in size. However, they do
exhibit a great degree of regularity.

A matrix of dimension n nr r× can be partitioned
as:

2 2 2

0 1 1

1 2 1

1 1

r

r r r

r r r r r

M M M
M M M

M

M M M

−

+ −

− − + −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M M O M

L

where each Mi element is a matrix of dimension
1 1.n nr r− −× Each of the Mi can be similarly partitioned

and the process repeated until scalars are reached.
This repeated partitioning leads to the fundamental
QMDD structure.

Definition 2: A quantum multiple-valued decision
diagram (QMDD) [9] is a directed acyclic graph with
the following properties:

• There is a single terminal vertex with associated
value 1. The terminal vertex has no outgoing
edges.

• There are some number of non-terminal vertices
each labeled by an r2-valued selection variable.
Each non-terminal vertex has r2 outgoing edges
designated 20 1 1, ,..., re e e − .

• One vertex is the start vertex and has a single
incoming edge that itself has no source vertex.

• Every edge in the QMDD, including the one
leading to the start vertex, has an associated
complex-valued weight. An edge with weight of 0
must point to the terminal vertex. This is required
to ensure uniqueness of the representation of each
matrix.

• The selection variables are ordered (assume with
no loss of generality the ordering

0 1 1... nx x x −p p p) and the QMDD satisfies the
following two rules:

- Each selection variable appears at most
once on each path from the start vertex to
the terminal vertex.

- An edge from a non-terminal vertex
labeled xi points to a non-terminal vertex
labeled xj, j < i or to the terminal vertex.
Hence x0 is closest to the terminal and xn-

1 labels the start vertex.
• No non-terminal vertex is redundant, i.e. no non-

terminal vertex has its r2 outgoing edges all with
the same weights and pointing to a common
vertex.

• Each non terminal vertex is normalized (see
details in next subsection).

• Non-terminal vertices are unique, i.e. no two non-
terminal vertices labeled by the same xi can have
the same set of outgoing edges (destinations and
weights).

As is common for decision diagram
representations, a key property of QMDDs is that the
representation for any given matrix is unique. A proof
is available from the authors. A key feature of this
proof is the normalization process that is applied
during the construction of a QMDD.

2.4 Vertex Normalization

The initial definition of QMDD [9][10] used the
following normalization rule:

Definition 3: A QMDD vertex is normalized if its
outgoing edges are such that there is a j such that

2,0 1,je j r≤ ≤ − has weight 1 where

, ,0 .ie i i j∀ ≤ < has weight 0.

When this rule is used, each vertex is normalized
when it is constructed by finding the nonzero weight
on the lowest index edge (one must exist or the vertex
is redundant), dividing all edge weights by the weight
identified, and attaching the identified weight to the
edge leading to the vertex.

We have found that vertex normalization as given
in Definition 3 does allow for adjacent variable
interchange to be performed as an operation local to
the variables being interchanged for QMDDs
representing reversible binary and multiple-valued
circuits. However, it does not for QMDDs
representing some quantum circuits. Space does not
permit us to provide a full explanation here but
basically the problem arises since variable reordering
changes the order in which the elements of the matrix
are considered and normalization as defined in
Definition 3 can identify different normalization
divisors depending on the variable order.

The solution is to use the following alternative
normalization definition:

Definition 4: A QMDD vertex is normalized if its
outgoing edges are such that the largest weight on any
edge out of the vertex is 1.

When this rule is used, the process for normalizing
a vertex is as described above except the maximum
weight (i.e. largest magnitude among the complex
weights) on the edges from the vertex is used as the
divisor and incoming edge weight. This approach is
independent of variable order, and allows for adjacent
variable interchange as a local operation since the
maximum value in a matrix is independent of which
order one traverses the matrix.

2.5 Skipped Variables

Definition 5: Given the ordering 0 1 1... nx x x −p p p
an edge from a vertex labeled , 0,ix i > skips a variable
if it points to the terminal vertex or it points to a vertex
labeled , 1.jx j i< −

Theorem 1: A QMDD for a matrix representing a
binary or multiple-valued reversible circuit has no
edges that skip variables except for edges that point to
the terminal vertex and have weight 0.

Proof: It is clear from the definition of QMDD, that an
edge with nonzero weight that skips a variable means
the corresponding matrix has a sub-matrix of adjacent
non-zero entries of dimension k kr r× for some k > 0.
However, the matrix representing a binary or multiple-
valued reversible function is a permutation matrix
since reversible functions are bijections and thus has
only 0 and 1 entries with a single 1 in each row and
column. It follows that the QMDD for such a circuit
can have no edges with nonzero weight that skip
variables.

Conjecture 1: Theorem 1 also holds for a QMDD
corresponding to a circuit composed of quantum gates.

Empirical evidence shows conjecture 1 is likely
true. We are currently working on a formal proof.

It is straightforward to show this conjecture is true
for the matrices describing individual reversible and
quantum gates by construction, and also for the matrix
representing a reversible binary or MVL circuit since
these matrices are permutation matrices and the only
constant square blocks in a permutation matrix have
value 0. We have not yet been able to show it is true
for arbitrary cascades of quantum gates.

3. Interchanging Adjacent Variables

We consider the case of interchanging variables α
and β where the former is immediately above the latter
(closest to the initial vertex) in the QMDD. Note that
each vertex has r2 outgoing edges. The key is, as
mentioned above, to perform the interchange as a local
transformation. The technique presented is based on
the technique developed by Miller and Drechsler [4]
for multiple-valued decision diagrams .

Consider a vertex γ labelled by variable α. We
construct a square matrix T of dimension r2. For
i=0,1,…, r2-1,

(a) if the i-edge from γ leads to a vertex δ labelled
by variable β, then for j=0,1,…, r2-1, ijT is set to
point to the vertex pointed to by the j-edge of δ
with the edge weight being the product of the
edge weights on the i-th edge from γ and the j-th
edge from δ;

(b) if the i-edge from γ leads to a vertex δ not
labelled β, then ijT is set to the i-edge from γ for
j=0,1,…, r2-1.

Once T is constructed as above, the level
interchange is made by relabelling γ with β, and
setting each j-edge from γ, j=0,1,…,q-1 to point to a
vertex labelled α whose i-th edge, i=0,1,…,p-1, points
to the vertex pointed to by .ijT During this
construction, if β denotes a variable, the edge
operations are normalised as described in the previous
subsection. It is easily seen that following this
construction, vertex γ, now labelled β, is the top of a
decision diagram representing the same matrix it did
when originally labelled α.

The complete level interchange is accomplished by
performing the above for all vertices originally
labelled α. These are readily identified as we use a
separate unique table [12] for each variable. The idea
of relabelling these vertices, as opposed to creating
new vertices, is critical as it means that edges leading
to them, and the vertices from whence those edges
originate, are unaffected by the level interchange.
When a vertex is relabelled it must be removed from
one unique table and entered into the unique table
corresponding to its new variable label but this is a
relatively simple operation given the data structures
used for QMDD [10].

The vertices originally labelled β are affected as
edges to them are removed. The use of reference
count garbage collection [10] accounts for when a
vertex can be deleted (actually reused) or must be
retained.

It is critical to note that no vertex above or below
the two levels being interchanged is affected except
for changing the reference counts of vertices
immediately below. The result is that adjacent
variable interchange is a local operation affecting only
the two levels being interchanged and reference counts
for vertices immediately below those levels.

4. Sifting QMDD

Given the above method for adjacent variable
interchange, variable reordering for QMDDs is readily
implemented using an approach based on Rudell’s
sifting approach [7] developed for BDDs.

In general terms, our sifting method proceeds as
follows:

QMDD Sifting Procedure:

i) Select a variable α that labels the most vertices
in the QMDD. In the event of a tie, choose the
variable closest to the terminal vertex.

ii) Sift α to the bottom (closest to the terminal
vertex) of the QMDD by a sequence of adjacent
variable interchanges.

iii) Sift α to the top of the QMDD by a sequence of
adjacent variable interchanges.

iv) During steps (ii) and (iii) a record is kept of the
position of α that yields the smallest vertex
count in the QMDD, so now sift α back down
to that position.

v) Repeat steps (i) to (iv) until each variable has
been sifted into its best position noting that
once a variable is selected for sifting, it is not
selected a second time.

Note that the size of the QMDD after each variable
interchange required in step (iv) is determined by
checking reference counts for the vertices for the two
variables being interchanged. It is not necessary to
traverse the entire QMDD. There are !n possible
orderings of n variables. The sifting method examines
on the order of 2n orderings, and determines the
ordering among this subset that result in the smallest
QMDD.

5. Experimental Results

The QMDD package is implemented in C. The
results reported here were run on a laptop computer
with a 1.73 GHz Intel Pentium M processor and 1GB
RAM running LINUX on a 256MB virtual machine
under VMware 5.5. We used LINUX in order to
compare our implementation to QuIDDPro 3.0(beta)
[11] which is available as an executable only. We used

the gcc 4.0.0 C compiler with level 4 optimization to
compile the QMDD package.

5.1 Binary Examples

Results for a number of binary functions from
Maslov’s [3] benchmark web site are reported in Table
2. For each circuit, we give the following information:
a) type – nct: circuit uses not, controlled-not and

Toffoli gates; qc: circuit uses controlled-not, V
and V+ gates.

b) lines – number of lines in the circuit,
c) gates – number of gates in the circuit,
d) number of vertices before sifting,
e) time to build the QMDD – CPU msec. using the

standard library time.h routines,
f) number of vertices after sifting,
g) time to sift QMDD – CPU msec. using the

standard library time.h routines,
h) percentage vertex count reduction by sifting,
i) maximum number of vertices encountered during

sifting – this is an indicator of how large the
QMDD might be but is not necessarily the
maximum since sifting does not consider all
variable orderings.

The results show that the effect of sifting varies
significantly from example to example. A low
improvement can be a result of having started from
what is already a good ordering, the fact that the
sifting heuristic does not visit all possible variable
orderings, or, the function’s QMDD representation is
insensitive to variable ordering.

The results for the “hidden-weight-bit” problems
hbw4 – hbw12 are interesting. They show the size of
the QMDD can grow exponentially with the number of
lines in the circuit. The benefit gained by sifting also
increases with the number of lines.

Table 2 also shows the results of using QuIDDPro
Version 3.0(beta) on the same computer. On average
for the circuits shown, the number of vertices for the
QuIDDPro representation is 2.06 times the number for
the QMDD representation prior to sifting. This is as
expected since a nonterminal QuIDDPro vertex has
two outgoing edges while a nonterminal QMDD
vertex has four outgoing edges for binary functions.
What is interesting is how much the ratio can differ
from 2. The largest sized decision diagrams for the
circuits shown is for cyc17_3 where the ratio is 2.47.
QuIDDPro uses the highly efficient CUDD decision
diagram package and also offers considerably more
functionality than the current QMDD implementation.
QuIDDPro is designed for binary reversible and
quantum gates and circuits.

5.2 Ternary Examples

There are as yet no established benchmarks for
multiple-valued reversible and quantum circuits
available in the literature. This is largely because
CAD tools for designing and simulating such circuits
are not generally well developed. Indeed it is hoped
that QMDD will be helpful in this regard.

Table 3 contains some ternary examples. The first
is the reversible ternary adder from [9] shown in Fig.
2. The initial QMDD is relatively small (23 vertices)
but even in this case sifting results in notable
reduction.

The S circuits are highly regular. An S circuit with
n lines has n-1 gates where gate gi is a C1 gate with
target xi and a single 1-control xi+1. As expected,
given this regular and quite simple structure, the
QMDDs are small (the number of vertices is twice the
number of lines in the circuit) and can be shown to
have a very regular structure. Sifting results in no
improvement, but, and this is a disadvantage of a
heuristic, considerable computation is required.

Each Rn-m circuit has n lines and m pseudo-
randomly generated gates. Each gate is randomly
chosen to be C1 or C2 with a randomly chosen target
and a single randomly chosen control. The control is
randomly chosen to be a 1 or 2-control. The
improvement by sifting is as expected quite variable.

These examples indicate that QMDD construction
and sifting are reasonably practical for quite large
binary and ternary problems. It is a concern that the
cost of sifting seems quite high for large ternary
examples. We are looking for ways to improve the
implementation, but it may well be that we are dealing
with representations of very large and very complex
matrices in those cases.

The QMDD package is applicable for higher radix
problems as well. To put this in better context, we
note that constructing a QMDD for an r-valued, n-line
circuit with m gates is equivalent to constructing m

n nr r× matrices and performing m-1 matrix
multiplications but does so in a tractable manner.

6. Conclusions and Future Work

This paper has considered variable reordering in
QMDD and has described a sifting technique for
determining good variable orderings. The
experimental results show the method can be quite
effective but also that it can be computationally
expensive sometimes with little benefit.

We are working on criteria that may help in
determining when it is likely to be useful to apply
sifting to a QMDD. We are studying the special

structure of QMDDs not evident in general decision
diagrams such as the frequency of edges of weight 0
pointing to the terminal vertex, the regular structure of
a QMDD resulting from the regular structure of the
matrices being represented and our conjecture
regarding skipped variables. We are also exploring
how sifting can be used to transform QMDD to
variable orderings that will better illuminate the
structure of the matrices for synthesis procedures.

7. References

[1] C.H. Bennett, “Logical Reversibility of Computation,”
IBM, J. Res. Dev., Vol. 17, No. 6, pp. 525-532, 1973.

[2] R.E. Bryant. “Graph-Based Algorithms for Boolean
Function Manipulation”. IEEE Transactions on
Computers, Vol. C-35 Issue 8, Aug. 1986, pp. 677-691.

[3] D. Maslov. Reversible logic synthesis benchmarks
page. http://www.cs.uvic.ca/~dmaslov/, Feb. 15, 2007.

[4] D.M. Miller and R. Drechsler, “Augmented sifting of
multiple-valued decision diagrams,” Proc. 2003 Int.
Symposium on Multiple-Valued Logic, Tokyo, Japan,
May 2003, pp. 275-382.

[5] D.M. Miller, G. Dueck, and D. Maslov, “A Synthesis
Method for MVL Reversible Logic,” Proc. 2004 Int.
Symposium on Multiple-Valued Logic, Toronto,
Canada, May 2004, pp. 74-80.

[6] M.A. Nielsen and I.L. Chuang, Quantum Computation
and Quantum Information, Cambridge University Press,
2000.

[7] R. Rudell, “Dynamic variable ordering for ordered
binary decision diagrams”, In Proceedings of the
International Conference on Computer-Aided Design,
Santa Clara, CA, Nov. 1993, pp. 42-47.

[8] F. Somenzi, “The CUDD Package”, University of
Colorado at Boulder, 1995. Version 2.4.0 available at:
http://vlsi.colorado.edu/~fabio/.

[9] D.M. Miller and M.A. Thornton, “QMDD: A Decision
Diagram Structure for Reversible and Quantum
Circuits”, Proc. IEEE International Symposium on
Multiple-Valued Logic, on CD, May 17-20, 2006.

[10] D.M. Miller, M.A. Thornton, and D. Goodman, “A
Decision Diagram Package for Reversible and Quantum
Circuits”, Proc. IEEE World Congress on Compu-
tational Intelligence, on CD, July 2006.

[11] G.F. Viamontes, I.L. Markov, and J.P. Hayes,
“QuIDDPro: High-Performance Quantum Circuit
Simulation”, vlsicad.eecs.umich.edu/Quantum/qp/, Oct.
20, 2006.

[12] S.N. Yanushkevitch, D.M. Miller, V.P. Shmerko and
R.S. Stankovic, Decision Diagram Techniques for
Micro- and Nanoelectronic Design, CRC Taylor and
Francis, 2006.

Acknowledgements This work was supported by a
Discovery Grant from the Natural Sciences and Engineering
Research Council of Canada. Tony Xiao assisted with the
use of QuIDDPro and with the collection of the experimental
data.

Table 2: Experimental Results – binary circuits

name type lines gates

vertices
before
sifting

time to
build

QMDD
(msec)

vertices
after

sifting

time to
sift

QMDD
(msec)

vertex
count

reduction
by sifting

max.
vertices
during
sifting

QuIDD
Pro

vertices

time to
build
BDD

(msec)
5mod5 nct 6 17 28 0 16 8 43.9% 28 45 77
6symd2 nct 10 20 247 7 170 42 31.2% 478 299 117
9symd2 nct 12 28 229 7 184 50 19.7% 558 445 194
c2 nct 35 116 150 30 136 289 9.3% 504 348 1546
c2 qc 35 305 150 220 136 241 9.3% 504 348 10245
c3-17 nct 3 6 10 0 10 4 0.0% 11 21 22
c410184 nct 14 46 39 0 33 43 15.4% 86 86 274
c410184 qc 14 74 39 0 33 52 15.4% 86 86 492
cyc17-3 nct 20 48 236 10 42 131 82.2% 418 584 880
ham3 nct 3 5 10 0 10 0 0.0% 10 21 21
ham15 nct 15 132 4522 140 2638 488 42.7% 13878 7547 2051
hwb4 nct 4 11 22 0 20 4 9.1% 22 45 43
hwb4 qc 4 21 22 0 20 8 9.1% 22 45 83
hwb7 nct 7 289 179 30 155 16 13.4% 181 351 2117
hwb8 nct 8 614 343 120 280 28 18.4% 351 684 6254
hwb9 nct 9 1541 683 640 520 40 23.9% 690 1349 24566
hwb10 nct 10 3595 1331 2920 960 59 27.9% 1347 2650 98704
hwb11 nct 11 9314 2639 14290 1730 130 34.4% 2685 5223 478555
hwb12 nct 12 18393 5167 53350 3185 265 38.4% 5254 10283 1722050
rd84d1 nct 15 28 3588 27 396 117 89.0% 4415 1252 255

Table 3: Experimental Results – ternary circuits

name lines gates

vertice
s

before
sifting

time to
build

QMDD
(msec)

vertices
after

sifting

time to
sift

QMDD
(msec)

vertex
count

reduction
by sifting

max.
vertices
during
sifting

adder 4 16 23 0 15 4 34.8% 39
S25 25 24 50 11 50 312 0.0% 184
S50 50 49 100 58 100 1370 0.0% 384
S75 75 74 150 168 150 3112 0.0% 584
S100 100 99 200 370 200 5550 0.0% 784
R5-25 5 25 132 11 124 15 6.1% 185
R5-50 5 50 204 35 200 23 2.0% 205
R5-75 5 75 196 58 193 19 1.5% 208
R5-100 5 100 203 85 198 23 2.5% 213
R10-25 10 25 1308 74 442 105 66.2% 1308
R10-50 10 50 9670 687 6839 1081 29.3% 12151
R10-75 10 75 41170 6776 34991 7901 15.0% 45826
R10-100 10 100 51133 12361 46556 10646 9.0% 52785

